[1]. Mostafaei K, Ramazi H (2019). Mineral Resource estimation using a combination of drilling and IP-Rs data using statistical and cokriging methods. Bulletin of the mineral research and exploration, 160: 177-195.
https://doi.org/10.19111/bulletinofmre502794.
[2]. Pwa A, Van-Moort JC (1999). Geochemical exploration using acid insoluble residues of rocks for volcanic-hosted massive sulphide deposits, Rosebery area, western Tasmania, Journal of Geochemical Exploration, 66: 55-69.
[3]. Yilmaz H (2003). Geochemical exploration for gold in western Turkey: success and failure, Journal of Geochemical Exploration, 80 (1): 117-135.
[4]. Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146. https://doi.org/10.1016/j.jafrearsci.2016.09.028
[5]. Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., ... & Han, R. (2019). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108-118. https://doi.org/10.1016/j.oregeorev.
2019.02.006
[6]. Yousefi, M., Barak, S., Salimi, A., & Yousefi, S. (2023). Should Geochemical Indicators Be Integrated to Produce Enhanced Signatures of Mineral Deposits? A Discussion with Regard to Exploration Scale. Journal of Mining and Environment, 14(3), 1011-1018. https://doi.org/10.22044/jme.2023.13160.2398
[7]. Mcclenaghan MB, Thorleifson LH, DiLabio RNW (2000). Till geochemical and indicator mineral methods in mineral exploration, Ore Geology Reviews,16: 145-166.
[8]. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940. https://doi.org/
10.1016/j.apgeochem.2021.104940
[9]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561. https://doi.org/10.1016/j.apgeochem.2023.105561
[10]. Cheng Q (2000). Multifractal theory and geochemical element distribution pattern, Earth Sciences Journal China University Geosciences, 25(3): 311-318.
[11]. Wang Q, Deng J, Wan L (2007). Fractal analysis of element distribution in Damoqujia gold deposit, Shandong province, China. Proceedings of the 12th conference of the international association mathematical Geology, 8: 262-265.
[12]. Darabi-Golestan F, Ghavami-Riabi R, Asadi-Harooni H (2013). Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu-Au porphyry, Arabian Journal of Geosciences, 6: 4821-4831.
[13]. TaleshHosseni, S., Moradzadeh, A., & Asghari, O (2019). Application of GERT Network Planning in the Geostatistical Simulation Projects Management Structure–Case Study: Dali Cu-Au Porphyry Deposit. Journal of Mining Engineering, 14(42), 32-46.
[14]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment, 14(3), 1019-1035.
[15]. Seyedrahimi-Niaraq, M., & Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[16]. Edgar, T. W., & Manz, D. O. (2017). Research methods for cyber security. Syngress.
[17]. Tolles, J., & Meurer, W. J. (2016). Logistic regression: relating patient characteristics to outcomes. Jama, 316(5), 533-534.
[18]. Doulati Ardejani F, Rooki R, Jodeiri Shokri B, Eslam Kish T, Aryafar A, Tourani P (2013). Prediction of rare earth elements in neutral alkaline mine drainage from Razi Coal Mine, Golestan Province, northeast Iran, using general regression neural network, Journal of Environmental Engineering, 139(6):896–907
[19]. Jodeiri Shokri B, Ramazi H, Doulati Ardejani F, Sadeghi Amirshahidi MH (2014). Prediction of pyrite oxidation in a coal washing waste pile applying artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS). Mine Water and the Environment 33: 146-156. https://doi.org/
10.1007/s10230-013-0247-3
[20]. Chao Zh, Ma G, Zhang Y, Zhu Y, Hu H (2018). The application of artificial neural network in geotechnical engineering. IOP conferences series: Earth and environmental science 189 (2018) 022054. doi :10.1088/1755-1315/189/2/022054
[21]. Mostafaei K, Ramazi H (2019). Investigating the applicability of induced polarization method in ore modelling and drilling optimization: a case study from Abassabad, Iran. Near Surface Geophysics, 17:637-652. https://doi.org/10.1002/nsg.12055
[22]. Shakeri, J., Jodeiri Shokri, B., & Dehghani, H (2020). Prediction of blast-induced ground vibration using gene expression programming (GEP), artificial neural networks (ANNS), and linear multivariate regression (LMR). Archives of Mining Sciences, 65(2): 317-335. DOI 10.24425/ams.2020.133195
[23]. Lawal IA, Kown S (2021). Application of artificial intelligence to rock mechanics: An overview, Journal of Rock Mechanic and Geotechnical Engineering, 3(1):248-226.
[24]. Ramu Ch, Sunkara SL, Ramu R, Sain K (2021). An ANN-based identification of geological features using multi-attributes: a case study from Krishna-Godavari basin, India, Arabian Journal of Geosciences, 14(299): 1-10. https://doi.org/10.1007/s12517-021-06652-z.
[25]. Sohrabi, P., Jodeiri Shokri, B., & Dehghani, H (2021). Predicting coal price using time series methods and combination of radial basis function (RBF) neural network with time series. Mineral Economics, 1-10., https://doi.org/10.1007/s13563-021-00286-z
[26]. Shamsi, R., Amini, M. S., Dehghani, H., Bascompta, M., Jodeiri Shokri, B., Entezam, S (2022). Prediction of fly-rock using gene expression programming and teaching–learning-based optimization algorithm. Journal of Mining and Environment, 13(2): 391-406. doi:10.22044/jme.2022.11825.2171
[27]. Entezam, S., Jodeiri Shokri, B., Doulati Ardejani, S., Mirzaghorbanali, A., McDougall, K., Aziz, N (2022). Predicting pyrite oxidation process within coal waste piles using multiple linear regression (MLR) and teaching-learning-based optimization (TLBO) algorithm, 2022 Resource Operators Conference (ROC2022), University of Wollongong, Australia, 250-257.
[28]. Yu Hen H, Jenq-Neng H (2002). Handbook of neural network signal processing. CRC PRESS. 384p.
[29]. Chartiera S, Renaud P, Boukadoum M (2008). A nonlinear dynamic artificial neural network model of memory, New Ideas in Psychology, 26: 252-277. https://doi.org/10.1016/
j.newideapsych.2007.07.005
[30]. Kashani NM, Shahhosseini Sh (2010). A methodology for modeling batch reactors using generalized dynamic neural networks, Chemical Engineering Journal, 159: 195-202.
[31]. Martinez-Ramon M (2006). Support Vector Machines for Antenna Array Processing and Electromagnetic, Universidad Carlos III de Madrid, Spain, Morgan & Claypool, USA.
[32]. Steinwart I (2008). Support Vector Machines, Los Alamos National Laboratory, information Sciences Group (CCS-3), Springer Science+Business Media, LLC.
[33]. Abedi M, Norouzi Gh, Bahroudi A (2012). Support vector machine for multi-classification of mineral prospectivity areas, Computers & Geosciences, 46: 272-283. https://doi.org/10.1016/
j.cageo.2011.12.014
[34]. Deng Ch, Pan H, Fang S, Konate AA, Qin R (2017). support vector machine as an alternative method for lithology classification of crystalline rocks, Journal of Geophysics and Engineering, 14: 341-349. https://doi.org/10.1088/1742-2140/aa5b5b.
[35]. Mohammadi N, Hezarkhani A (2018). Application of support vector machine for the separation of mineralized zones in the Takht-e-Gonbad porphyry deposit, SE Iran, Journal of African earth Sciences, 143: 301-308. https://doi.org/10.1016/
j.jafrearsci.2018.02.005.
[36]. Vural, A. (2019). Evaluation of soil geochemistry data of Canca Area (Gümüşhane, Turkey) by means of Inverse Distance Weighting (IDW) and Kriging methods-preliminary findings. Bulletin of the Mineral Research and Exploration, 158(158), 195-216.
[37]. Vural, A., & Aydal, D. (2020). Soil geochemistry study of the listvenite area of Ayvacik (Çanakkale, Turkey). Caspian Journal of Environmental Sciences, 18(3), 205-215.
[38]. Vural, A., & Cicek, B. (2022). Evaluation of Gumustug Antimonite (Torul, Gumushane/Turkiye) Mineralization with Soil Geochemistry and Multivariate Geostatistical Studies. Journal of Engineering Research and Applied Science, 11(2), 2156-2170.
[39]. Mostafaei, K., Maleki, Sh., Zamani, M.A.M., & Knez, D. (2022). Risk management prediction of mining and industrial projects by support vector machine. Resources Policy, 78, https://doi.org/10.1016/j.resourpol.2022.102819
[40]. Asadi H, Porwal A, Fatehi M, Kianpouryan S, Lu Y (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran, Ore Geology Reviews, 71: 819-838. http://dx.doi.org/10.1016/j.oregeorev.2014.12.001.
[41]. Zarasvandi A, Rezaei M, Raith J, Lentz D, Azimzadeh A, Pourkaseb H (2015) Geochemistry and fluid characeristics of the Dalli porphyry Cu-Au deposit, Central, Iran, Journal of Asian earth sciences, 111: 175-191. https://doi.org/10.1016/j.jseaes.2015.07.029.
[42]. Darabi-Golestan F, Ghavami-Riabi R, Khalokakaie R, Asadi-Harooni H, Seyedrahimi-Nyaragh M (2013b) Interpretation of lithogeochemical and geophysical data to identify the buried mineralized area in Cu-Au porphyry of Dalli-Northern Hill, Arabian Journal Geosciences, 6: 4499-4509.
[43]. Zarasvandi, A., Asadi, F., Pourkaseb, H., Ahmadnejad, F., & Zamanian, H (2015). Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies. Journal of Economic Geology, 7(2), 277-306. doi: 10.22067/econg.v7i2.38447
[44]. Daneshjou, M., Zarasvandi, A., Pourkaseb, H., Rezaei, M., & Asadi Harooni, H. (2016). Investigation of effective factors in mineralization at Dalli porphyry Cu-Au deposit, Markazi province: base on geological, mineralogical and geochemical evidences. Petrological Journal, 7(28), 73-94. doi: 10.22108/ijp.2016.21231
[45]. Fatehi, M., & Asadi Haroni, H (2019). Geophysical signatures of the gold rich porphyry copper deposits: A case study at the Dalli Cu-Au porphyry deposit. Journal of Economic Geology, 10(2), 639-675. doi: 10.22067/econg.v10i2.69539
[46]. Hamidi MH, Asadiharooni H, Mokhtari AR (2011). Modeling and Reserve Evaluation of Dali Porphyry Copper - Gold Deposit using Concentration-Volume Fractal Method Markazi Province, Isfahan University of Technology, MSc Thesis.
[47]. Abe S (2005). Support Vector Machines for Pattern Classification. Kobe University, Kobe, Japan, Springer.
[48]. Quang-Anh T, Xing L, Haixin D (2005). Efficient performance estimate for one-class support vector machine, Pattern Recognition Letters, 26: 1174-1182.
[49]. Sánchez A, V. D (2003). Advanced support vector machines and kernel methods. Neurocomputing, 55(1-2), 5-20.
[50]. Te-Ming, H., Kecman, V., (2006). Kernel Based Algorithms for Mining Huge Data Sets, Faculty of Engineering the University of Auckland, Springer-Verlag Berlin Heidelberg.
[51]. Gholami, R., & Fakhari, N. (2017). Support vector machine: principles, parameters, and applications. In Handbook of neural computation (pp. 515-535). Academic Press.
[52]. Merler, S., & Jurman, G. (2006). Terminated ramp–support vector machines: a nonparametric data dependent kernel. Neural Networks, 19(10), 1597-1611.
[53]. Wang L. (2005). Support vector machines: theory and applications (Vol. 177). Springer Science & Business Media. 28p.
[54]. Bishop CM. (2006). Pattern Recognition and Machine Learning. Springer,758p.
[55]. Van Der Heijden, F., Duin, R. P., De Ridder, D., & Tax, D. M. (2005). Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons.
[56]. Stefano, M., Giuseppe, J., (2006). Terminated Ramp-Support Vector Machines: A nonparametric data dependent kernel, Neural Networks, Vol: 19, p: 1597-1611.
[57]. John CP .(1998). Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines. MSRTR: Microsoft Research.
[58]. Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24(5), 1151-1156.
[59]. Da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., dos Reis Alves, S. F., da Silva, I. N., ... & dos Reis Alves, S. F (2017). Artificial neural network architectures and training processes (pp. 21-28). Springer International Publishing.
[60]. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification, Wiley. New York, 680.
[61]. Theodoridis, S., Pikrakis, A., Koutroumbas, K., & Cavouras, D. (2010). Introduction to pattern recognition: a matlab approach. Academic Press.
[62]. Blauberg IV, Sadovsky VN, Yudin EG (1977) ystem theory. Progress Publishers.
[63]. Han DW, Cluckie I. (2004). Support vector machines identification for runoff modelling. In Hydroinformatics: (In 2 Volumes, with CD-ROM) (pp. 1597-1604).
[64]. Granian, H., Tabatabaei, S. H., Asadi, H. H., & Carranza, E. J. M. (2015). Multivariate regression analysis of lithogeochemical data to model subsurface mineralization: a case study from the Sari Gunay epithermal gold deposit, NW Iran. Journal of Geochemical Exploration, 148, 249-258.
[65]. Talebi, H., Mueller, U., Tolosana-Delgado, R., & van den Boogaart, K. G. (2019). Geostatistical simulation of geochemical compositions in the presence of multiple geological units: application to mineral resource evaluation. Mathematical Geosciences, 51, 129-153. Abbass, A.A., Fidelis, I.K., & Shakarit, B.A. (2023). Interpreting the magnetic signatures and radiometric indicators within Kogi State, Nigeria for economic resources. Geosystems and Geoenvironment, 2(2), p.100157.