[1] Bücker, M. (2018). Pore-scale modelling of induced-polarization mechanisms in geologic materials. Doctoral dissertation. Bonn, University of Bonn. https://d-nb.info/118557610X/34.
[2] Pearce, C. I., Pattrick, R. A., & Vaughan, D. J. (2006). Electrical and magnetic properties of sulfides. Reviews in Mineralogy and Geochemistry, 61(1), 127-180. https://doi.org/10.2138/rmg.
2006.61.3.
[3] Wong, J. (1979). An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores. Geophysics, 44(7), 1245-1265. https://doi.org/10.1190/1.1441005.
[4] Wait, J. R. (1959). A phenomenological theory of over-voltage for metallic particles, in Over-voltage research and geophysical applications. J. R. Wait, Ed., New York, Pergamon Press.
[5] Madden, T. R., & Marshal, D. J. (1959). Induced polarization: a study of its causes and magnitudes in geologic materials. A.E.C. rep. RME-3160.
[6] Madden, T. R., & Cantwell, T. (1967). Induced polarization: a review. Mining Geophysics, 2, SEG, Tulsa.
[7] Loeb, J. (1969). Sur la nature nhvhico-chimiuue de 1a polarization provoquee. Rev. de l’Inst. Francais des Petrole et Ann. Des Combustibles Liquides, 24, 1455-1476.
[8] Wong, J., & Strangway, D. (1981). Induced polarization in disseminated sulfide ores containing elongated mineralization. Geophysics, 46(9), 1258-1268. https://doi.org/10.1190/1.1441264.
[9] Mahan, M. K., Redman, J. D., & Strangway, D. W. (1986). Complex resistivity of synthetic sulphide bearing rocks. Geophysical Prospecting, 34(5), 743-768, https://doi.org/10.1111/j.1365-2478.1986.tb00491.x.
[10] Gurin, G., Titov, K., Ilyin, Y., & Tarasov, A. (2015). Induced polarization of disseminated electronically conductive minerals: A semi-empirical model. Geophysical Journal International, 200(3), 1555-1565. https://doi.org/10.1093/
gji/ggu490.
[11] Placencia-Gómez, E., & Slater, L. D. (2014). Electrochemical spectral induced polarization modeling of artificial sulfide-sand mixtures. Geophysics, 79(6), EN91-EN106. https://doi.org/10.1190/geo2014-0034.1.
[12] Bücker, M., Flores Orozco, A., & Kemna, A. (2018). Electrochemical polarization around metallic particles- Part 1: The role of diffuse-layer and volume-diffusion relaxation. Geophysics, 83(4), 1-53. https://doi.org/10.1190/geo2017-0401.1.
[13] Bücker, M., Undorf, S., Flores Orozco, A., & Kemna, A. (2019). Electrochemical polarization around metallic particles- Part 2: The role of diffuse surface charge. Geophysics, 84(2), e57-e73. https://doi.org/10.1190/geo2018-0150.1.
[14] Crooks, R. M. (2016). Principles of Bipolar Electrochemistry. ChemElectroChem, 3(3), 357-359. https://doi.org/10.1002/
celc.201500549.
[15] Fosdick, S. E., Knust, K. N.; Scida, K., & Crooks, R. M. (2013). Bipolar electrochemistry. Angewandte Chemie International Edition, 52(40), 10438-10456. https://doi.org/10.1002/
anie.201300947.
[16] Duval, J., Kleijn, J. M., & van Leeuwen, H. P. (2001). Bipolar electrode behaviour of the aluminum surface in a lateral electric field. Journal of Electroanalytical Chemistry, 505(1-2), 1-11. https://doi.org/10.1016/S0022-0728(01)00461-2.
[17] Mavré, F., Anand, R. K., Laws, D. R., Chow, K.-F., Chang, B.-Y., Crooks, J. A., & Crooks, R. M., (2010). Bipolar electrodes: a useful tool for concentration, separation, and detection of analytes in microelectrochemical systems. Analytical Chemistry, 82(21), 8766-8774. https://doi.org/10.1021/
ac101262v.
[18] Zhan, W., Alvarez, J., & Crooks, R. M. (2002). Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. Journal of the American Chemical Society, 124(44), 13265-13270. https://doi.org/10.1021/ja020907s.
[19] Shida, N., & Inagia, S. (2020) Bipolar electrochemistry in synergy with electrophoresis: Electric field-driven electrosynthesis of anisotropic polymeric materials. Chemical Communications, 56(92), 14327-14336. https://doi.org/10.1039/
D0CC06204A.
[20] Koefoed, L., Pedersen, S. U., & Daasbjerg, K. (2017). Bipolar electrochemistry–a wireless approach for electrode reactions. Current Opinion in Electrochemistry, 2(1), 13-17. https://doi.org/10.1016/j.coelec.2017.02.001.
[21] Wang, Y. L., Cao, J. T., & Liu, Y. M. (2022) Bipolar Electrochemistry– A powerful tool for micro/nano electrochemistry. Chemistry Open, 11(12), e202200163. https://doi.org/10.1002/open.202200163.
[22] Duval, J. F. L., Huijs, G. K., Threels, W. F., Lyklema, J., & van Leeuwen, H. P. (2003a). Faradaic depolarization in the electrokinetics of the metal-electrolyte solution interface. Journal of Colloid and Interface Science, 260(1), 95-106. https://doi.org/10.1016/S0021-9797(02)00134-0.
[23] Duval, J. F. L., Minor, M., Cecilia, J., & van Leeuwen, H. P. (2003b). Coupling of Lateral Electric Field and Transversal Faradaic Processes at the Conductor/Electrolyte Solution Interface. The Journal of Physical Chemistry B, 107(17), 4143-4155. https://doi.org/10.1021/jp022459g.
[24] Duval, J. F. L., van Leeuwen, H. P., Cecilia, J., & Galceran, J. (2003c). Rigorous analysis of reversible faradaic depolarization processes in the electrokinetics of the metal/electrolyte solution interface. The Journal of Physical Chemistry B, 107(28), 6782-6800. https://doi.org/10.1021/jp030278o.
[25] Mavré, F., Chow, K.-F., Sheridan, E., Chang, B.-Y., Crooks, J. A., & Crooks, R. M. (2009). Theoretical and experimental framework for understanding ECL emission at bipolar electrodes. Analytical Chemistry, 81(15), 6218-6225. https://doi.org/10.1021/ac900744p.
[26] Parasnis, D. S. (1956). The electrical resistivity of some ‘sulphide and oxide minerals and their ores. Tenth Meeting of the European Association of Exploration Geophysicists. held in Hamburg, May 16-18 1956, Sweden. https://doi.org/10.1111/
j.1365-2478.1956.tb01409.x.
[27] Dentith, M., & Mudge, S. T. (2014). Geophysics for the mineral exploration geoscientist. Cambridge University Press. New York, ISBN 978-0-521-80951-1 Hardback.
[28] Shuey, R. T. (1975). Semiconducting ore minerals. Elsevier Science Publishers Coy. eBook ISBN: 9780444601421.
[29] Abraitis, P. K., Pattrick, R. A. D., & Vaughan, D. J. (2004). Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74(1-4), 41-59, https://doi.org/10.1016/j.minpro.2003.09.002.
[30] Mukherjee, S., Ramakrishnan, A., Chen, K. H., Chattopadhyay, K., Suwas, S., & Mallik, R. C. (2019). Tuning the Thermoelectric Properties of Chalcopyrite by Co and Se Double Substitution. AIP Conference Proceedings 2115, 030574 (2019); https://doi.org/10.1063/1.5113413.
[31] Emerson, D. (2017). Conductivities of Broken Hill Style Lead Ores. Preview, 188, 37-40, https://doi.org/10.1071/
PVv2017n188p37.
[32] Vella, L., & Emerson, D. (2012). Electrical Properties of Magnetite- and Hematite-Rich Rocks and Ores. 22nd International Geophysical Conference and Exhibition, 26-29 February 2012- Brisbane, Australia.
[33] Naser-Sadrabadi, A., & Zare, H. R. (2019). A highly-sensitive electrocatalytic measurement of nitrate ions in soil and different fruit vegetables at the surface of palladium nanoparticles modified DVD using the open bipolar system. Microchemical Journal. 148, 206-213. https://doi.org/10.1016/j.microc.2019.04.067.C. Zheng et al., “Mineral prospectivity mapping based on Support vector machine and Random Forest algorithm – A case study from Ashele copper–zinc deposit, Xinjiang, NW China,” Ore Geol Rev, vol. 159, p. 105567, Aug. 2023, doi: 10.1016/j.oregeorev.2023.105567.