Gold prospectivity mapping through generation and integration of geophysical, geochemical, remote sensing and geological evidence layers in Saqez area, NW Iran

Document Type : Research Paper

Authors

1 Department of Earth Science, University of New Brunswick, Canada.

2 School of Mining Engineering, College of Engineering, University of Tehran, Iran.

3 Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran

10.22059/ijmge.2023.358626.595062

Abstract

This study serves to demonstrate the application of geophysical data interpretation in order to recognize the structural features related to the mineralization. The aforementioned structures generate the evidence layers, which undergo augmentation and enhancement processes. This results in the production of evidence layers that, when integrated with other geo-exploration evidence layers, contribute to the delineation of mineral exploration targets with increased reliability. In this study, the utilization of aeromagnetic and radiometric data is illustrated for the recognition of structural features and host rocks associated with orogenic gold mineral systems. Furthermore, the integration of geophysical data interpretation, specifically the identification of mineralization-related features, with alterations and the geochemical signature of mineralization is demonstrated. This integration facilitates the delimitation of exploration targets with improved dependability.

Keywords

Main Subjects


  1. Abbass, A.A., Fidelis, I.K., & Shakarit, B.A. (2023). Interpreting the magnetic signatures and radiometric indicators within Kogi State, Nigeria for economic resources. Geosystems and Geoenvironment, 2(2), p.100157.
  2. Abdelkareem, M., & El-Baz, F. (2017). Characterizing hydrothermal alteration zones in Hamama area in the central Eastern Desert of Egypt by remotely sensed data. Geocarto International. 1-19.
  3. Abd El-Wahed, M., Kamh, S., Abu Anbar, M., Zoheir, B., Hamdy, M., Abdeldayem, A., Lebda, E.M., & Attia, M. (2023). Multisensor satellite data and field studies for unravelling the structural evolution and gold metallogeny of the Gerf Ophiolitic Nappe, Eastern Desert, Egypt. Remote Sensing, 15(8), p.1974.
  4. Abedi, M., Gholami, A., & Norouzi, G.H. (2013). A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran. Computer & Geoscience. 52, 269-280.
  5. Abedi, M., Gholami, A., & Norouzi, G.H. (2014). A new stable downward continuation of airborne magnetic data based on Wavelet deconvolution. Near Surface Geophysics. 12(6),751-762.
  6. Abedi, M., & Oskooi. B. (2015). A combined magnetometry and gravity study across Zagros orogeny in Iran. Tectonophysics. 664,164-175.
  7. Abedi, M., Norouzi, G.H., & Fathianpour, N. (2015). Mineral potential mapping in Central Iran using fuzzy ordered weighted averaging method. Geophysical Prospecting. 63(2),461-477.
  8. Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146.
  9. Agard, P., Omrani, J., Jolivet, L., & Mouthereau, F. (2005). Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International journal of earth sciences. 94(3), 401-419.
  10. Aghajani, H., Moradzadeh, A., & Zeng, H. (2009). Estimation of depth to salt domes from normalized full gradient of gravity anomaly and examples from the USA and Denmark. Journal of Earth Science. 20 (6), 1012.
  11. Airo, M.L. (2007). Application of aerogeophysical data for gold exploration: implications for Central Lapland Greenstone Belt. Gold in the Central Lapland Greenstone Belt, Finland. Geological Survey of Finland, Special Paper. 44, 171-192.
  12. Akbari, Z., Rasa, I., Mohajjel, M., Adabi, M.H., & Yarmohammadi, A.m. (2015). Hydrothermal Alteration Identification of Ahangaran Deposit, West of Iran Using ASTER Spectral Analysis. International Geoinformatics Research and Development Journal. 6, 1.
  13. Aliyari, F., Rastad, E., & Mohajjel, M. (2012). Gold Deposits in the Sanandaj–Sirjan Zone: Orogenic Gold Deposits or Intrusionā€Related Gold Systems? Resource Geology, 62(3), pp.296-315.
  14. Aliyari, F., Rastad, E., Goldfarb, R.J., & Sharif, J.A. (2014). Geochemistry of hydrothermal alteration at the Qolqoleh gold deposit, northern Sanandaj–Sirjan metamorphic belt, northwestern Iran: Vectors to high-grade ore bodies. Journal of geochemical exploration. 140, 111-125.
  15. Almasi, A., Yousefi, M., & Carranza, E.J.M. (2017). Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews. 91, 1066-1080.
  16. Azad, M.R., Koneshloo, M., Rouhani, A.K., & Aghajani, H. (2016). Comparison of Factorial Kriging Analysis Method and Upward Continuation Filter to Recognize Subsurface Structures—A Case Study: Gravity Data from a Hydrocarbon Field in the Southeast Sedimentary Basins of the East Vietnam Sea. Acta Geophysica. 64(2), 398-416.
  17. Azizi, H., Tarverdi, M.A., & Akbarpour, A. (2010). Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research. 46(1), 99-109.
  18. Bahiru, E.A., & Woldai, T. (2016). Integrated geological mapping approach and gold mineralization in Buhweju area, Uganda. Ore Geology Reviews. 72, 777-793.
  19. Barak, S., Bahroudi, A., Jozanikohan, G., & Aslani, S. (2016). Geochemical Anomaly Separation by Using the Soil Samples of Eastern Neysian, Isfahan Province. Geochemistry. 5(1), 55-71.
  20. Barak, S., Bahrodi, A., & Jozanikohan, G. (2018). The use of fuzzy inference system in the integration, iranian journal of mining engineering. 13(38), 97-112.
  21. Barak, S., Abedi, M., & Bahroudi, A. (2020). A knowledge-guided fuzzy inference approach for integrating geophysics, geochemistry, and geology data in a deposit-scale porphyry copper targeting, Saveh, Iran. Bollettino di Geofisica Teorica ed Applicata, 61(2).
  22. Barak, S., Imamalipour, A., Abedi, M., Bahroudi, A., & Khalifani, F. M. (2021). Comprehensive modeling of mineral potential mapping by integration of multiset geosciences data. Geochemistry, 81(4), 125824.
  23. Carranza, E.J.M., & Laborte, A.G. (2015). Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geology Reviews. 7, 777-787.
  24. Carranza, E.J.M., Sadeghi, M., & Billay, A. (2015). Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa). Ore Geology Reviews. 71, 703-718.
  25. Cooper, G.R.J., & Cowan, D.R. (2006). Enhancing potential field data using filters based on the local phase. Computers & Geosciences. 32(10), 1585-1591.
  26. Cooper, G.R., & Cowan, D.R. (2008). Edge enhancement of potential-field data using normalized statistics. Geophysics. 73(3), H1-H4.
  27. Elkhateeb, S.O., & Abdellatif, M.A.G. (2018). Delineation potential gold mineralization zones in a part of centeral Eastern Desert, Egypt using Airborne Magnetic and Radiometric data. NRIAG Journal of Astronomy and Geophysics.
  28. Fan, M., Xiao, K., Sun, L., & Xu, Y. (2023). Metallogenic prediction based on geological-model driven and data-driven multisource information fusion: A case study of gold deposits in Xiong’ershan area, Henan Province, China. Ore Geology Reviews, p.105390.
  29. Fatehi, M., & Asadi, H.H. (2017). Application of semi-supervised fuzzy c-means method in clustering multivariate geochemical data, a case study from the Dalli Cu-Au porphyry deposit in central Iran. Ore Geology Reviews. 81, 245-255.
  30. Gabr, S., Ghulam, A., & Kusky, T. (2010). Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews. 38(1-2), 59-69.
  31. Gabr, S.S., Diab, H., Fattah, T.A.A., Sadek, M.F., Khalil, K.I., & Youssef, M.A. (2022). Aeromagnetic and Landsat-8 data interpretation for structural and hydrothermal alteration mapping along the Central and Southern Eastern Desert boundary, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 25(1), pp.11-20.
  32. Gahlan, H.A., Azer, M.K., Asimow, P.D., & Al-Kahtany, K.M. (2022). Formation of gold-bearing listvenite in the mantle section of the Neoproterozoic Bir Umq ophiolite, Western Arabian Shield, Saudi Arabia. Journal of African Earth Sciences, 190, p.104517.
  33. Ghasemi, A., & Talbot, C.J. (2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences. 26(6), 683-693.
  34. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Mihalasky, M.J. (2019). Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and CA fractal modeling. Ore Geology Reviews, 113, 103115.
  35. Ghasemzadeh, S., Maghsoudi, A., Yousefi, M., & Mihalasky, M.J. (2022). Information value-based geochemical anomaly modeling: A statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Applied Geochemistry, 136, 105177.
  36. Ghiasi, S.M., Hosseini, S.H., Afshar, A., & Abedi, M. (2023). A novel magnetic interpretational perspective on charmaleh iron deposit through improved edge detection techniques and 3D inversion approaches. Natural Resources Research, 32(1), pp.147-170.
  37. Glennie, K.W. (2000). Cretaceous tectonic evolution of Arabia's eastern plate margin: a tale of two oceans.
  38. Goldfarb, R.J., Groves, D.I., & Gardoll, S. (2001). Orogenic gold and geologic time: a global synthesis. Ore geology reviews. 18(1-2), 1-75.
  39. Goldfarb, R.J., & Groves, D.I. (2015). Orogenic gold: Common or evolving fluid and metal sources through time. Lithos, 233, pp.2-26.
  40. Hassanpour, S., & Afzal, P. (2013). Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences. 6(3), 957-970.
  41. Hosseini, S.A., Khah, N.K.F., Kianoush, P., Afzal, P., Ebrahimabadi, A., & Shirinabadi, R. (2023). Integration of Fractal modeling and Correspondence Analysis Reconnaissance for Geochemically High-Potential Promising Areas, NE Iran. Results in Geochemistry, p.100026.
  42. Imamalipour, A., & Barak, S. (2019). Geochemistry and tectonic setting of the volcanic host rocks of VMS mineralisation in the Qezil Dash area, NW Iran: implications for prospecting of Cyprus-type VMS deposits in the Khoy ophiolite. Geological Quarterly, 63(3).
  43. Imamalipour, A., Barak, S., & Khalifani, F.M. (2020). Quantifying mass changes during hydrothermal alteration in listwaenite-type mercury mineralization, Tavreh area, northwestern Iran. Geochemistry: Exploration, Environment, Analysis, 20(4), 425-439.
  44. Kruse, F.A., Lefkoff, A.B., Boardman, J.W., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., & Goetz, A.F.H. (1993). The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote sensing of environment. 44(2-3), 145-163.
  45. Magalhães, L.A., & Souza Filho, C.R. (2012). Targeting of gold deposits in Amazonian exploration frontiers using knowledge-and data-driven spatial modeling of geophysical, geochemical, and geological data. Surveys in Geophysics. 33(2), 211-241.
  46. [46] Mami Khalifani, F., Bahroudi, A., Mohebi, A., Aslani, S., Jozanikohan, G., & Barak, S. (2016). Geochimcal anomaly separation using the multivariate statistical methods in Saqqez Region, 4th International Mine and Mining Industries Congress & 6th Iranian Mining Engineering Conference. Teharn, Iran.
  47. Mami Khalifani, F., Bahroudi, A., Barak, S., & Jozani, G. (2018a). Geochemical exploration of orogenic gold deposit using Concentration-number (C-N) fractal and probability-number (P.N) methods in the NW of the Sanandaj-Sirjan Zone”, The 10th Iranian Economic Geology Conference, ISC, University of Isfahan (UI).
  48. Mami Khalifani, F., Bahroudi, A., Barak, S., Abedi, M., & Mohammadpour, M. (2018b). Integrated exploration of orogenic gold mineralization in the northwest of Iran, Saqez area, integrated exploration of orogenic gold mineralization in the northwest of Iran, Saqez area, The 10th Iranian Economic Geology Conference, Isfahan, Iran.
  49. Mami Khalifani, F., Bahroudi, A., Abedi, M., & Mohammadpour, M. (2019). Integrated exploration of orogenic gold mineralization in the northwest of Iran, Saqez area, integrated exploration of orogenic gold mineralization in the northwest of Iran, Saqez area, The 10th Iranian Economic Geology Conference, Isfahan, Iran.
  50. Mavrantza, O., & Argialas, D.P. (2003). Implementation and evaluation of spatial filtering and edge detection techniques for lineament mapping: case study-Alevrada, Central Greece. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology. 4886, 417-429. International Society for Optics and Photonics.
  51. Mekkawi, M.M., Abd-El-Nabi, S.H., Farag, K.S., & Abd Elhamid, M.Y. (2022). Geothermal resources prospecting using magnetotelluric and magnetic methods at Al Ain AlSukhuna-Al Galala Albahariya area, Gulf of Suez, Egypt. Journal of African Earth Sciences, 190, p.104522.
  52. Mohebi, A., Mirnejad, H., Lentz, D., Behzadi, M., Dolati, A., Kani, A., & Taghizadeh, H. (2015). Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: an analysis of structural evolution from remote sensing, geophysical, geochemical and geological data. Ore Geology Reviews. 69, 187-198.
  53. Mohamed Taha, A.M., Xi, Y., He, Q., Hu, A., Wang, S., & Liu, X. (2022). Investigating the Capabilities of Various Multispectral Remote Sensors Data to Map Mineral Prospectivity Based on Random Forest Predictive Model: A Case Study for Gold Deposits in Hamissana Area, NE Sudan. Minerals, 13(1), p.49.
  54. Mokhtari, A.R., Cohen, D.R., & Gatehouse, S.G. (2009). Geochemical effects of deeply buried Cu–Au mineralization on transported regolith in an arid terrain. Geochemistry: Exploration, Environment and Analysis. 9, 227–236.
  55. Müller, D., Kwan, K., & Groves, D.I. (2022). Integrated geophysical signatures and structural geometry of the Kabinakagami Lake greenstone belt, Superior Province, Ontario, Canada: Exploration implications for concealed Archean orogenic gold deposits. Journal of Applied Geophysics, 199, p.104613.
  56. Nigm, A.A., Youssef, M.A., & Abdelwahab, F.M. (2018). Airborn gamma-ray spectrometric data as guide for probable hydrocarbon accumulations at Al-Laqitah area, Central Eastern Desert of Egypt. Applied Radiation and Isotopes. 132, 38-46.
  57. Núñez-Demarco, P., Bonilla, A., Sánchez-Bettucci, L., & Prezzi, C. (2023). Potential-field filters for gravity and magnetic interpretation: a review. Surveys in Geophysics, 44(3), pp.603-664.
  58. Nykänen, V., Groves, D.I., Ojala, V.J., & Gardoll, S.J. (2008). Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Science. 55(1), 39-59.
  59. Pour, A.B., & Hashim, M. (2015a). Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews. 64, 13-22.
  60. Pour, A.B., & Hashim, M. (2015b). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science. 9(2), 155-166.
  61. Prabaharan, S., & Subramani, T. (2016). Identification of hydrocarbon micro-seeps based on mineral alteration in a part of Cauvery Basin, South India using Hyperion Data.
  62. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G.R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
  63. Rahmati, A., Afzal, P., Abrishamifar, S.A., & Sadeghi, B. (2015). Application of concentration–number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arabian Journal of Geosciences. 8(5), 2953-2965.
  64. Reeves, C. (2005). Aeromagnetic surveys: principles, practice and interpretation (Vol. 155). Geosoft.
  65. Rezaie, M., Moradzadeh, A., Aghajani, H., & Nejati, A. (2016). Imaging Ojatabad iron ore using magnetic data.
  66. Rezaie, M., Moradzadeh, A., & Kalateh, A.N. (2017). Fast 3D inversion of gravity data using solution space priorconditioned lanczos bidiagonalization. Journal of Applied Geophysics. 136, 42-50.
  67. Sabzai, M., Eshraghi, S.A., & Roshan-Ravan, J. (1997). Geological Map of Sirjan (1: 100,000). Geological Survey of Iran.
  68. Siemon, B., Ibs-von Seht, M., Steuer, A., Deus, N., & Wiederhold, H. (2020). Airborne electromagnetic, magnetic, and radiometric surveys at the German North Sea coast applied to groundwater and soil investigations. Remote Sensing, 12(10), p.1629.
  69. Silva, A.M., Pires, A.C.B., Mccafferty, A., de Moraes, R.A.V., & Xia, H. (2003). Application of airborne geophysical data to mineral exploration in the uneven exposed terrains of the Rio Das Velhas greenstone belt. Brazilian Journal of Geology. 33(2), 17-28.
  70. [70] Stampfli, G.M., & Borel, G.D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters. 19(1), 17-33.
  71. Sukumar, M. (2017). Performance evaluation of lineament extraction methods in ASTER satellite images. International Journal of Oceans and Oceanography. 11(2), 249-263.
  72. Sun, Y., Tian, S., & Di, B. (2017). Extracting mineral alteration information using WorldView-3 data. Geoscience Frontiers. 8(5), 1051-1062.
  73. Weyermann, J., Schläpfer, D., Hueni, A., Kneubühler, M., & Schaepman, M. (2009). Spectral angle mapper (SAM) for anisotropy class indexing in imaging spectrometry data. In Imaging Spectrometry 7457-74570B. International Society for Optics and Photonics.
  74. Yilmaz, H. (2003a). Geochemical exploration for gold in western Turkey: success and failure. Journal of Geochemical Exploration. 80, 117-135.
  75. Yilmaz, H. (2003b). Exploration at the Kuscayiri Au (Cu) prospect and its implications for porphyry-related Au (Cu) mineralization in western Turkey. Journal of Geochemical Exploration. 77, 133−150.
  76. Yilmaz, H., Sönmez, F.N., & Carranza, E.J.M. (2015). Discovery of Au–Ag mineralization by stream sediment and soil geochemical exploration in metamorphic terrain in western Turkey. Journal of Geochemical Exploration. 158, 55-73.
  77. Yousefi, M., Carranza, E.J.M., & Kamkar-Rouhani. (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration. 128, 88-96.
  78. Yousefi, M., Kamkar-Rouhani, A., & Carranza, E.J.M. (2014). Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochemistry: Exploration, Environmental, Analysis. 14, 45-58.
  79. Yousefi, M. (2017a). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews. 83, 200-214.
  80. Yousefi, M. (2017b). Analysis of zoning pattern of geochemical indicators for targeting of Porphyry-Cu mineralization: A pixel-based mapping approach. Natural Resources Research. 26(4), 429-441.
  81. Yousefi, M., & Hronsky, J.M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 105561.
  82. Zadeh, M.H., Tangestani, M.H., Roldan, F.V., & Yusta, I. (2014a). Spectral characteristics of minerals in alteration zones associated with porphyry copper deposits in the middle part of Kerman copper belt, SE Iran. Ore Geology Reviews. 62, 191-198.
  83. Zadeh, M.H., Tangestani, M.H., Roldan, F.V., & Yusta, I. (2014b). Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Advances in Space Research. 53(3), 440-451.
  84. Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration. 111, (1-2), 13-22.