[1] Yu, K.-p., Yu, Y.-f., and Xu, X.-y. (2013). Separation behavior and mechanism of hematite and collophane in the presence of collector RFP-138. Transactions of Nonferrous Metals Society of China, 23(2): p. 501-507. doi:
https://doi.org/10.1016/S1003-6326(13)62491-7
[2] Arol, A.I., & Aydogan, A. (2004). Recovery enhancement of magnetite fines in magnetic separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232(2-3): p. 151-154. doi: https://doi.org/10.1016/j.colsurfa.2003.06.003
3[] F Filippov, L., V. Severov, & Filippova, I. (2014). An overview of the beneficiation of iron ores via reverse cationic flotation. International journal of mineral processing, 127: p. 62-69. doi: https://doi.org/10.1016/j.minpro.2014.01.002
[4] Yu, J., Ge, Y., & Cai, X. (2016). The desulfurization of magnetite ore by flotation with a mixture of xanthate and dixanthogen. Minerals, 6(3): p. 70. doi: https://doi.org/
10.3390/min6030070
[5] Mathur, S., Singh, P., & Moudgil, B. (2000). Advances in selective flocculation technology for solid-solid separations. International Journal of Mineral Processing, 58(1-4): p. 201-222. doi: https://doi.org/10.1016/S0301-7516(99)00072-1
[6] Mudd, G.M. (2007). The sustainability of mining in Australia: key production trends and their environmental implications. Department of Civil Engineering, Monash University and Mineral Policy Institute, Melbourne.
[7] Araujo, A., Viana, P., & Peres, A. (2005), Reagents in iron ores flotation. Minerals Engineering, 18(2): p. 219-224. doi: https://doi.org/10.1016/j.mineng.2004.08.023
[8] Nakhaei, F. & Irannajad, M. (2018). Reagents types in flotation of iron oxide minerals: A review. Mineral Processing and Extractive Metallurgy Review, 39(2): p. 89-124. doi: https://doi.org/10.1080/08827508.2017.1391245
[9] Carlson, J. & Kawatra, S. (2013). Factors affecting zeta potential of iron oxides. Mineral Processing and Extractive Metallurgy Review, 34(5): p. 269-303. doi: https://doi.org/10.1080/
08827508.2011.604697
[10] Rao, S.R. (2013). Surface chemistry of froth flotation: Volume 1: Fundamentals. Springer Science & Business Media.
[11] Hassanzadeh, A., et al. (2022). Technological assessments on recent developments in fine and coarse particle flotation systems. Minerals Engineering, 180: p. 107509. doi: https://doi.org/10.1016/j.mineng.2022.107509
[12] Lakshmanan, V.I. & Gorain, B. (2019). Innovations and Breakthroughs in the Gold and Silver Industries: Concepts, Applications and Future Trends. Springer.
[13] Awatey, B., et al. (2013). Optimization of operating parameters for coarse sphalerite flotation in the HydroFloat fluidised-bed separator. Minerals Engineering, 50: p. 99-105. doi: https://doi.org/10.1016/j.mineng.2013.06.015
[14] Nwaila, G.T., et al. (2021). Valorisation of mine waste-Part I: Characteristics of, and sampling methodology for, consolidated mineralised tailings by using Witwatersrand gold mines (South Africa) as an example. Journal of Environmental Management, 295: p. 113013. doi: https://doi.org/10.1016/j.jenvman.2021.113013
[15] Safari, M., Harris, M., & Deglon, D. (2018). The effect of energy input on the flotation of a platinum ore in a pilot-scale oscillating grid flotation cell. Minerals Engineering, 2017. 110: p. 69-74. doi: https://doi.org/10.1016/j.mineng.2017.04.012
[16] Hassanzadeh, A. (2018). A survey on troubleshooting of closed-circuit grinding system. Canadian Metallurgical Quarterly, 57(3): p. 328-340. doi: https://doi.org/10.1080/
00084433.2018.1464618
[17] Zuo, W., et al. (2020). Effect of high voltage pulse treatment on the surface chemistry and floatability of chalcopyrite and pyrite. Minerals Engineering, 147: p. 106170. doi: https://doi.org/10.1016/j.mineng.2019.106170
[18] Andres, U. (2010). Development and prospects of mineral liberation by electrical pulses. International Journal of Mineral Processing, 97(1-4): p. 31-38. doi: https://doi.org/10.1016/j.minpro.2010.07.004
[19] Yan, G., et al. (2020). Investigating the influence of mineral characteristics on induced effect of high-voltage pulse discharge by synthetic minerals. Minerals Engineering, 153: p. 106380. doi: https://doi.org/10.1016/j.mineng.2020.106380
[20] Shi, F., et al. (2014). A potential application of high voltage pulse technology in a gold-copper ore grinding circuit. IMPC 2014-27th International Mineral Processing Congress, Gecamin Digital Publications.
[21] Shi, F., Zuo, W., & Manlapig, E. (2015). Pre-concentration of copper ores by high voltage pulses. Part 2: Opportunities and challenges. Minerals Engineering, 79: p. 315-323. doi: https://doi.org/10.1016/j.mineng.2015.01.014
[22] Wang, E., Shi, F., & Manlapig, E. (2011). Pre-weakening of mineral ores by high voltage pulses. Minerals Engineering, 24(5): p. 455-462. doi: https://doi.org/10.1016/j.mineng.
2010.12.011
[23] Wang, E., Shi, F., & Manlapig, E. (2012). Mineral liberation by high voltage pulses and conventional comminution with same specific energy levels. Minerals Engineering,. 27: p. 28-36. doi: https://doi.org/10.1016/j.mineng.2011.12.005
[24] Andres, U., Timoshkin, I., & Soloviev, M. (2001). Energy consumption and liberation of minerals in explosive electrical breakdown of ores. Mineral Processing and Extractive Metallurgy, 110(3): p. 149-157. doi: https://doi.org/10.1179/mpm.2001.110.3.149
[25] Razavian, S.M. (2014). Effect of High Voltage Electric Pulses on Phosphate Ore Comminution. PhD Thesis, Amirkabir University of Technology.
[26] Razavian, S.M., Rezai, B., Irannajad, M. (2014) Investigation on Pre-weakening and Crushing of Phosphate Ore Using High Voltage Electric Pulses. Advanced Powder Technology, Vol. 25, pp. 1672-1678. doi: https://doi.org/10.1016/j.apt.2014.06.010
[27] Razavian, S.M., Rezai, B., Irannajad, M. (2015). Finite Element Method Based Simulation of Electrical Breakage of Iron-Phosphate Ore. PPMP Journal, Vol 51 (1), pp. 137-150. doi: http://dx.doi.org/10.5277/ppmp150113
[28] Razavian, S.M., Rezai, B., Irannajad, M., Ravanji, M.H. (2015). Numerical Simulation of High Voltage Electric Pulse Comminution of Phosphate Ore, IJMST, Vol. 25 (3), pp. 473-478. doi: https://doi.org/10.1016/j.ijmst.2015.03.023