Integrated interpretation of aeromagnetic and aero-radiometric data to delineate structures and hydrothermal alteration zones associated with Gold and Base metal Mineralization in Chitipa area, Northern Malawi

Document Type : Research Paper

Author

Department of Mining Engineering, Malawi University of Business and Applied Sciences, Blantyre, Malawi.

10.22059/ijmge.2023.354353.595027

Abstract

This study presents an analysis of aeromagnetic and aero-radiometric data from the Chitipa area in northern Malawi to delineate structures, hydrothermal alteration areas, and gold mineral potential zones, as well as to identify prospective regions for further mineral exploration.  Airborne geophysical data, specifically aeromagnetic and aero-radiometric data, were utilized. We applied several enhancements and filters to the geophysical data, including reduction to the pole, the first vertical derivatives, analytical signal, tilt angle derivative enhancements, Centre for Exploration Targeting (CET) grid analysis, Euler deconvolution, and radiometric data ratios. The results of the analysis provided detailed information on the subsurface geology and indicate that the area is characterized by faulting and shearing with structures predominantly trending in a northwest direction, and minor trends in the northeast-southwest, east-west, and north-south directions. Zones with hydrothermal alteration were found to coincide with structural associations in the NW part of the study area, indicating that the structures served as channel ways for migrating hydrothermal fluids that reacted with the rock formation, resulting in alteration. The northwest area is a promising mineralization zone, and further exploration should focus on this area.

Keywords

Main Subjects


  1. J. Goldfarb and D. I. Groves, “Orogenic gold: Common or evolving fl uid and metal sources through time,” Lithos, vol. 233, pp. 2–26, 2015, doi: 10.1016/j.lithos.2015.07.011.
  2. J. Goldfarb and D. I. Groves, “Orogenic gold : Common or evolving fl uid and metal sources through time,” Lithos, vol. 233, pp. 2–26, 2015, doi: 10.1016/j.lithos.2015.07.011.
  3. J. Goldfarb, D. I. Groves, and S. Gardoll, “Orogenic gold and geologic time: a global synthesis,” Ore Geol Rev, 2001.
  4. Saibi, M. Azizi, and S. Mogren, “Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data,” Acta Geophysica, vol. 64, no. 4, pp. 978–1003, 2016, doi: 10.1515/acgeo-2016-0046.
  5. Mohamed et al., “3-D magnetic inversion and satellite imagery for the Um Salatit gold occurrence, Central Eastern Desert, Egypt,” Arabian Journal of Geosciences, vol. 11, no. 21, 2018, doi: 10.1007/s12517-018-4020-6.
  6. M. Saadi, E. Aboud, H. Saibi, and K. Watanabe, “Integrating data from remote sensing, geology and gravity for geological investigation in the tarhunah area, Northwest libya,” Int J Digit Earth, vol. 1, no. 4, pp. 347–366, 2008, doi: 10.1080/17538940802435844.
  7. Bersi, H. Saibi, and M. C. Chabou, “Aerogravity and remote sensing observations of an iron deposit in Gara Djebilet, southwestern Algeria,” Journal of African Earth Sciences, vol. 116, pp. 134–150, 2016, doi: 10.1016/j.jafrearsci.2016.01.004.
  8. Azizi, H. Saibi, and G. R. J. Cooper, “Mineral and structural mapping of the Aynak-Logar Valley (eastern Afghanistan) from hyperspectral remote sensing data and aeromagnetic data,” Arabian Journal of Geosciences 2015 8:12, vol. 8, no. 12, pp. 10911–10918, Jun. 2015, doi: 10.1007/S12517-015-1993-2.
  9. N. Nabighian, “The analytic signal of two-dimensional mag- netic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation.,” Geophysics 37, 507±517., 1972.
  10. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans Microw Theory Tech, vol. 47, no. 11, pp. 2075–2084, 1999, doi: 10.1109/22.798002.
  11. M. Eldosouky and S. O. Elkhateeb, “Texture analysis of aeromagnetic data for enhancing geologic features using co-occurrence matrices in Elallaqi area, South Eastern Desert of Egyp,” NRIAG Journal of Astronomy and Geophysics, vol. 7, no. 2018, pp. 155–161, 2018.
  12. O. Olomo, S. Bayode, O. A. Alagbe, G. M. Olayanju, and O. K. Olaleye, “Aeromagnetic Mapping and Radioelement Influence on Mineralogical Composition of Mesothermal Gold Deposit in Part of Ilesha Schist Belt, Southwestern Nigeria,” NRIAG Journal of Astronomy and Geophysics, vol. 11, no. 1, pp. 177–192, Dec. 2022, doi: 10.1080/20909977.2022.2057147.
  13. M. Schetselaar, J. R. Harris, T. Lynds, and E. A. De Kemp, “Remote Predictive Mapping (RPM): A Strategy for Geological Mapping of Canada North,” Journal of geoscience, canada, vol. 34, no. December, pp. 93–111, 2007.
  14. A. Komolafe, Z. N. Kuria, T. Woldai, M. Noomen, A. Yekini, and B. Anifowose, “Integrated Remote Sensing and Geophysical Investigations of the Geodynamic Activities at Lake Magadi, Southern Kenyan Rift,” vol. 2012, 2012, doi: 10.1155/2012/318301.
  15. D. Palomera, “Application of Remote Sensing and Geographic Information Systems for Mineral Predictive Mapping , Deseado Massif , Southern Argentina by,” University of Twente, ITC Thesis, 2004.
  16. Behnia, J. R. Harris, R. H. Rainbird, M. C. Williamson, and M. Sheshpari, “Remote predictive mapping of bedrock geology using image classification of Landsat and SPOT data, western Minto Inlier, Victoria Island, Northwest Territories, Canada,” Int J Remote Sens, vol. 33, no. 21, pp. 6876–6903, Nov. 2012, doi: 10.1080/01431161.2012.693219.
  17. -L. Airo and K. Loukola-Ruskeeniemi, “Characterization of sulfide deposits by airborne magnetic and gamma-ray responses in eastern Finland,” Ore Geol Rev, vol. 24, no. 1–2, pp. 67–84, Jan. 2004, doi: 10.1016/j.oregeorev.2003.08.008.
  18. -L. Airo and M. Wennerström, “Application of regional aeromagnetic data in targeting detailed fracture zones,” J Appl Geophy, vol. 71, no. 2–3, pp. 62–70, Jun. 2010, doi: 10.1016/j.jappgeo.2010.03.003.
  19. -L. Airo and K. Loukola-Ruskeeniemi, “Characterization of sulfide deposits by airborne magnetic and gamma-ray responses in eastern Finland,” The leading Edge, vol. 24, no. 1–2, pp. 67–84, Jan. 2004, doi: 10.1016/j.oregeorev.2003.08.008.
  20. T. Ranganai, K. A. Whaler, and C. J. Ebinger, “Aeromagnetic interpretation in the south central Zimbabwe Craton : ( reappraisal of ) crustal structure and tectonic implications,” International Journal of Earth Sciences, pp. 2175–2201, 2015, doi: 10.1007/s00531-015-1279-7.
  21. L. Dickson and K. M. Scott, “Interpretation of aerial gamma-ray surveys-adding the geochemical factors,” Journal of Australian geology and geophysics, vol. 17, no. 2, pp. 187–200, 1997.
  22. Sayed and I. Selim, “The use of magnetic and geo-electrical data to delineate the subsurface structures and groundwater potentiality in Southeastern Sinai, Egypt,” Springer, pp. 1479–1494, 2013, doi: 10.1007/s12665-013-2234-1.
  23. Keating and M. Pilkington, “Euler deconvolution of the analytic signal and its application to magnetic interpretation,” pp. 165–182, 2004.
  24. Boszczuk, L. Zhen, P. Roy, S. Lacroix, and A. Cheilletz, “A 3D gravity data interpretation of the Matagami mining camp , Abitibi Subprovince , Superior Province , Québec , Canada Application to VMS deposit exploration,” vol. 75, pp. 77–86, 2011, doi: 10.1016/j.jappgeo.2011.06.031.
  25. M. Gaafar, “Geophysical signature of the vien-type uranium mineralization of Wadi Eishimbai , Southern Eastern Desert ,” pp. 1185–1197, 2012, doi: 10.1007/s12517-010-0263-6.
  26. Wang et al., “Lithologic mapping test for gravity and magnetic anomalies A case study of gravity – magnetic anomaly pro fi le in the eastern segment of the China – Mongolia border,” J Appl Geophy, vol. 117, pp. 23–31, 2015, doi: 10.1016/j.jappgeo.2015.03.020.
  27. B. K. Shives, B. W. Charbonneau, and K. L. Ford, “The detection of potassic alteration by gamma ray spectrometry - recognition of alteration related to mineralization,” Radiation Geophysics, no. 416, pp. 1–17, 1997.
  28. A. El-sadek, “Radiospectrometric and magnetic signatures of a gold mine in Egypt,” J Appl Geophy, vol. 67, no. 1, pp. 34–43, 2009, doi: 10.1016/j.jappgeo.2008.08.012.
  29. Herbert, T. Woldai, M. Carranza, and F. J. A. Van Ruitenbeek, “Predictive mapping of prospectivity for orogenic gold in Uganda,” Journal of African Earth Sciences, 2014, doi: 10.1016/j.jafrearsci.2014.03.001.
  30. Chisambi, T. Haundi, and G. Tsokonombwe, “Geologic structures associated with gold mineralization in the Kirk Range area in Southern Malawi,” Open Geosciences, vol. 13, no. 1, pp. 1345–1357, 2021, doi: 10.1515/geo-2020-0304.
  31. Ahmed et al., “Magnetic properties of Co doped WSe2 by implantation,” J Alloys Compd, vol. 731, pp. 25–31, Jan. 2018, doi: 10.1016/J.JALLCOM.2017.09.288.
  32. Bloomfield. and M.S.Garson. “The Geology of the Kirk Range-Lisungwe Valley Area. Ministry of Natural Resources. Geological Survey Department. Bulletin No.17.,” The Government Printer, Zomba. Malawi, 1965.
  33. S. Cater and J. D. Bennet, The Geology and Mineral Resources of Malawi. Zomba: Government print, Zomba, Malawi, 1973.
  34. Dulanya, “A review of the geomorphotectonic evolution of the south Malawi rift,” Journal of African Earth Sciences, 2017.
  35. Dulanya, N. Morales-simfors, and Å. Sivertun, “Journal of African Earth Sciences Comparative study of the silica and cation geothermometry of the Malawi hot springs : Potential alternative energy source,” Journal of African Earth Sciences, vol. 57, no. 4, pp. 321–327, 2010, doi: 10.1016/j.jafrearsci.2009.11.001.
  36. Ring and A. Kronner, “Shear-zone patterns and eclogite-facies metamorphism in the Mozambique belt of northern Malawi, east-central Africa : implications for the assembly of Gondwana,” Precambrian Res, vol. 116, pp. 19–56, 2002.
  37. Sommer et al., “Metamorphic petrology and zircon geochronology of high-grade rocks from the central Mozambique Belt of Tanzania : crustal recycling of Archean and Palaeoproterozoic material during the Pan-African orogeny,” Journal of Metamorphic Geology, pp. 915–934, 2003, doi: 10.1046/j.1525-1314.2003.00491.x.
  38. Boniface, V. Schenk, and P. Appel, “Mesoproterozoic high-grade metamorphism in pelitic rocks of the northwestern Ubendian Belt : Implication for the extension of the Kibaran intra-continental basins to Tanzania,” Precambrian Res, vol. 249, pp. 215–228, 2014, doi: 10.1016/j.precamres.2014.05.010.
  39. B. McConnell, Outline of the geology of Ufipa and Ubende. Bulletin of Geological Survey of Tanganyika. 1950.
  40. Ring, A. Kröner, and T. Toulkeridis, “Palaeoproterozoic granulite-facies meta-morphism and granitoid intrusions in the Ubendian-Usagaran Orogen ofnorthern Malawi, east-central Africa.,” Precambrian Reserch., vol. 85, 27–51., 1997.
  41. De Waele, J. Liegeois, A. A. Nemchin, and F. Tembo, “Isotopic and geochemical evidence of proterozoic episodic crustal reworking within the irumide belt of south-central Africa , the southern metacratonic boundary of an Archaean Bangweulu Craton,” Precambrian Res, vol. 148, pp. 225–256, 2006, doi: 10.1016/j.precamres.2006.05.006.
  42. H. Ackermann and A. Forster, “Grundzuge der Stratigraphie und Struktur des Irumide Orogen.,” 21st International Geological Congress,. pp. 182–192, 1960.
  43. H. Ackermann, “Ein neuer Faltengürtel in Nordrhodesien und seine tektonische Stellung im Afrikanischen Grundgebirge.,” Geologische Rundschau, vol. 38, 24–39, 1950.
  44. H. Macey et al., “Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana,” Precambrian Res, vol. 233, pp. 259–281, 2010, doi: 10.1016/j.precamres.2013.03.012.
  45. Boyd et al., “The Geology And Geochemistry Of The East African Orogen In Northeastern Mozambique,” Geological Society of South Africa, vol. 113, pp. 87–129, 2010, doi: 10.2113/gssajg.113.1.87.
  46. De Waele, I. C. W. Fitzsimons, F. Tembo, and B. Mapani, “The geochronological framework of the Irumide Belt : A prolonged crustal history along the margin of the Bangweulu Craton,” Am J Sci, no. February, 2009, doi: 10.2475/02.2009.03.
  47. De Waele, “Untying the Kibaran knot : A reassessment of Mesoproterozoic correlations in southern Africa based on SHRIMP U-Pb data from the Irumide belt,” Geological Society Of America, no. 6, pp. 509–512, 2003.
  48. Sommer and A. Kröner, “Lithos Ultra-high temperature granulite-facies metamorphic rocks from the Mozambique belt of SW Tanzania AR,” Lithos, vol. 170–171, pp. 117–143, 2013, doi: 10.1016/j.lithos.2013.02.014.
  49. Ring and A. Kronner, “Shear-zone patterns and eclogite-facies metamorphism in the Mozambique belt of northern Malawi, east-central Africa : implications for the assembly of Gondwana,” Precambrian Res, vol. 116, pp. 19–56, 2002.
  50. Kroner and A. S. Collins, “The East African Orogen: New Zircon and Nd Ages and Implications for Rodinia and Gondwana Supercontinent Formation and Dispersal,” Gondwana Research, no. 2, pp. 179–181, 2001.
  51. Baranov and H. Naudy, “Numerical Calculation Of The Formula Of Reduction To The Magnetic Pole,” Geophysics, vol. 29, no. 1. pp. 67–79, 1964. doi: 10.1190/1.1439334.
  52. Geosoft, “Oasis montaj Viewer 7.0 The core software platform for working with large volume spatial data QUICK STARTTM TUTORIAL.” 2008.
  53. B. Arogundade, M. O. Awoyemi, O. S. Hammed, S. C. Falade, and O. D. Ajama, “Structural investigation of Zungeru-Kalangai fault zone and its environ, Nigeria using aeromagnetic and remote sensing data,” Heliyon, vol. 8, no. 3, p. e09055, Mar. 2022, doi: 10.1016/J.HELIYON.2022.E09055.
  54. Ates, F. Bilim, A. Buyuksarac, and Ö. Bektas, “A tectonic interpretation of the Marmara Sea, NW Turkey from geophysical data,” Earth, Planets and Space, vol. 60, no. 3, pp. 169–177, 2008, doi: 10.1186/BF03352780.
  55. Ateş, A. Büyüksaraç, F. Bilim, Ö. Bektaş, Ç. Şendur, and G. Komanovali, “Spatial correlation of the aeromagnetic anomalies and seismogenic faults in the Marmara region, NW Turkey,” Tectonophysics, vol. 478, no. 1–2, pp. 135–142, 2009, doi: 10.1016/j.tecto.2008.09.025.
  56. Rozimant, A. Büyüksaraç, and Ö. Bektaş, “Interpretation of magnetic anomalies and estimation of depth of magnetic crust in Slovakia,” Pure Appl Geophys, vol. 166, no. 3, pp. 471–484, 2009, doi: 10.1007/s00024-009-0447-8.
  57. Reeves, R. Macnab, and S. Maschenkov, “Compiling all the world’s magnetic anomalies,” Eos, Transactions American Geophysical Union, vol. 79, no. 28, pp. 338–338, Jul. 1998, doi: 10.1029/98EO00255.
  58. L. Mohan, W. R. Roest, J. Verhoef, and M. Pilkington, “Magnetic interpretation using the 3-D analytic signal; discussion and reply,” Geophysics, vol. 58, no. 8, pp. 1214–1216, Aug. 1993, doi: 10.1190/1.1443507.
  59. S. Spector, A. and Grant, “Statistical models for interpreting aeromagneflc data.,” Geophysics 35, 293- 302., 1970.
  60. M. Aziz, W. A. Sauck, E.-A. H. Shendi, M. A. Rashed, and M. Abd El-Maksoud, “Application of Analytic Signal and Euler Deconvolution in Archaeo-Magnetic Prospection for Buried Ruins at the Ancient City of Pelusium, NW Sinai, Egypt: A Case Study,” Surv Geophys, vol. 34, no. 4, pp. 395–411, Apr. 2013, doi: 10.1007/s10712-013-9229-z.
  61. B. Reid, J.M., Allsop, H.Granser, A.J. Millett, & I.W. Somerton, “Magnetic interpretation i n three dimensions using Euler deconvolution,” Geophysics, vol. v 55, 80-9.
  62. Airo and M. Wennerström, “Application of regional aeromagnetic data in targeting detailed fracture zones,” J Appl Geophy, vol. 71, no. 2–3, pp. 62–70, 2010, doi: 10.1016/j.jappgeo.2010.03.003.
  63. O. Elkhateeb and M. A. G. Abdellatif, “Delineation potential gold mineralization zones in a part of Central Eastern Desert, Egypt using Airborne Magnetic and Radiometric data,” NRIAG Journal of Astronomy and Geophysics, vol. 7, no. 2, pp. 361–376, 2018, doi: 10.1016/j.nrjag.2018.05.010.
  64. J. Holden, M. Dentith, and P. Kovesi, “Towards the automated analysis of regional aeromagnetic data to identify regions prospective for gold deposits,” Comput Geosci, vol. 34, no. 11, pp. 1505–1513, 2008, doi: 10.1016/j.cageo.2007.08.007.
  65. Dentith and S. Mudge, Geophysics for Exploration Geoscientist. 2014. doi: 978-0-521-80951-1.
  66. B. Reid, J. M. Allsop, H. Granser, A. J. Millett, and I. W. Somerton, “Magnetic interpretation in three dimensions using Euler deconvolution,” Geophysics, vol. 55, no. 1, pp. 80–91, Feb. 2012, doi: 10.1190/1.1442774.K. Amponsah-tawiah, “The Mining Industry in Ghana : A Blessing or a Curse.,” International Journal of Business and Social Sciences, 2(12), 62–69., 2011.