Edge detection of geological structures based on a logistic function: a case study for gravity data of the Western Carpathians

Document Type : Reply to comment on Paper


1 Institute of Geophysics, University of Tehran, Iran

2 Department of Geophysical Engineering, Istanbul University - Cerrahpasa, Istanbul, Turkey



Magnetic and gravity anomalies have spatially overlapping fingerprints from many buried sources that differ in shape, depth, density contrast, magnetization intensity, and direction. Geophysicists have developed a suite of image enhancement filter algorithms that accurately represent the geometry and detail of subsurface features. Edge enhancement filters are high-pass filters that emphasize potential field anomalies, horizontal lateral edges, and the horizontal location of buried sources, i.e., specific combinations of directional derivatives of gravity and magnetic fields. Lateral edge enhancement filters (e.g., THG, AS, TA, TM, LTHG, IL, and ILTHG) were investigated using Gaussian noise on synthetic magnetic and gravity field data. The results show that LTHG and IL perform better than the other procedures. The ILTHG filter defined with the logistic function does not have the required accuracy and capability to determine the lateral boundaries. In addition, the filters were examined using real gravity field data from the Western Carpathians area in Slovakia. The primary and secondary faults in the western and southern Tribeč Mountains and the secondary faults and geological formations in the Pohronský Inovec Mountains are recognizable in the LTHG and IL images. The results of the LTHG and IL maps will allow us to improve the qualitative interpretation of gravity anomalies in studying the structural and tectonic geology of the Slovak Tribeč and Pohronský Inovec Mountains.


Main Subjects

[1] Hinze WJ, von Frese RRB, Saad AH. Gravity and Magnetic Exploration—Principles, Practices, and Applications. 1st ed. Cambridge University Press; 2013. 525 p
[2] Alvandi, A., Toktay, H, D., & Pham, L, T. (2022a). Capability of improved Logistics filter in determining lateral boundaries and edges of gravity and magnetic anomalies Tuzgolu Area Turkey, Journal of Mining Engineering, 17(56), pp. 57-72. doi: 10.22035/ijme.2022.538985.1889
[3] Everett, M.E. (2013). Near-surface applied geophysics. Cambridge University Press
[4] Alvandi, A., Toktay, H, D., & Pham, L, T. (2022b). Interpretation of gravity data using logistic function and total horizontal gradient (LTHG)-A case study: Charak anticline, JOURNAL OF RESEARCH ON APPLIED GEOPHYSICS (JRAG), 7(5), doi: 10.22055/JRAG.2022.11530.1325
[5] Beiki, M. (2010), Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75(6): I59-I75.
[6] Bastani M. and L. B. Pedersen, 2001, Automatic interpretation of magnetic dike parameters using the analytical signal technique. Geophysics, 66, 551-561
[7] Haney, M., Johnston, C., Li, Y., and Nabighian, M. 2003. Envelopes of 2D and 3D magnetic data and their relationship to the analytic signal: Preliminary results. In 73rd Annual International Meeting Expanded Abstracts. Society of Exploration Geophysicists, pp. 592–595.
[8] Salem, A., Ravat, D., Gamey, T.J., and Ushijima, K. 2002. Analytic signal approach and its applicability in environmental magnetic investigations. Appl. Geophys., 59, 231–255.
[9] Nabighian, M. N., 1985, Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms – Fundamental relations. Geophysics, 59, 780-786.
[10] Miller, H.G., and Singh, V.J. 1995. Potential field tilt – A new concept for location of potential field sources. Appl. Geophys., 32, 213–217.
[11] Verduzco, B., Fairhead, J.D., Green, C.M., and MacKenzie, C. 2005. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–l19.
[12] Cooper G R J, Cowan D R. 2006. Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32 (10): 1585-1591.
[13] Pham, L.T., Oksum, E. & Do, T.D. Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geod Geophys 55, 153–155 (2019). https://doi.org/10.1007/s50328-019-00258-6
[14] Pham, L.T., Van Vu, T., Le Thi, S. et al. Enhancement of Potential Field Source Boundaries Using an Improved Logistic Filter. Pure Appl. Geophys. 177, 5237–5259 (2020). https://doi.org/10.1007/s00025-020-02552-9
[15] Melouah, O., Pham, L.T., Improved ILTHG method for edge enhancement of geological structures: application to gravity data from the Oued Righ valley, J. Afr. Earth Sci., 177 (2021), Article 105162
[16] Wijns C, Perez C, Kowalczyk P. 2005. Theta map: Edge detection in magnetic data. Geophysics, 70 (5).
[17] Cordell, L., & Grauch, V. J. S., 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In W. J. Hinze (Ed.), The utility of regional gravity and magnetic maps (1st ed., pp. 181–197). Tulsa, Oklahoma:Society of Exploration Geophysicists.
[18] Fairhead, J.D., Salem, A., Williams, S., and Samson, E. 2008. Magnetic interpretation made easy: The tilt-depth-dip- rk method. In 2008 Annual International Meeting Expanded Abstracts. Society of Exploration Geophysicists, pp. 779–783.
[19] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section – Its properties and use of automated anomaly interpretation. Geophysics, 37, 507-517.
[20] Nabighian, M. N., 1975, Additional comments on the analytic signal of two dimensional magnetic bodies with polygonal cross-section. Geophysics, 39, 85-92.
[21] Roest, W. R., J. Verhoef, and M. Pilkington, 1992, Magnetic interpretation using the 3-D analytic signal. Geophysics, 57, 116-125.
[22] Salem, A., Williams, S., Fairhead, D., Smith, R., and Ravat, D. 2008. Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73, L1–L10.
[23] Salem, A., Williams, S., Fairhead, J., Ravat, D., and Smith, R. 2007. Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26, 1502–l505.
[24] Hók, J., Kahan, Š. & Aubrecht, R., 2001: Geológia Slovenska. Bratislava, Univerzita Komenského, 1 – 57. (In Slovak.).
[25] Hók, J., Kováč, M., Pelech, O., Pešková, I., Vojtko, R. & Králiková, S., 2016: The Alpine tectonic evolution of the Danube Basin and its northern periphery (southwestern Slovakia). Geol. Carpath., 67, 5, 595 – 505.
[26] Hók, J.; Pelech, O.; Tet’ák, F.; Németh, Z.; Nagy, A. Outline of the geology of Slovakia (W. Carpathians). Miner. Slov. 2019, 51, 31–60. (THIS IS MISSING IN THE TEXT)
[27] Ivanička J., Polák M., Hók J., Határ J., Greguš J., Vozár J., Nagy A., Fordinál K., Pristaš J., Konečný V., Šimon L., Geological map of the Tribeč Mountains (1:50000). GSSR, Bratislava, 1998.
[28] Bielik, M., Kováč, M., Kučera, I., Michalík, P., Šujan, M. & Hók, J., 2002: Neoalpine linear density boundaries (faults) detected by gravimentry. Geologica Carpathica 53, 235–255
[29] Staškovanová, Veronika and Minár, Jozef. Modelling the geomorphic history of the Tribeč Mountains and the Pohronský Inovec Mountains (Western Carpathians) with the CHILD model, Open Geosciences, 8(1), 2016, pp. 371-389. https://doi.org/10.1515/geo-2016-0038
[30] Zahorec P., Pašteka R., Mikuška J., Szalaiová V., Papčo J., Kušnirák D., Pánisová J., Krajňák M., Vajda P., Bielik M., Marušiak I., 2017: Chapter 7 – National Gravimetric Database of the Slovak Republic. In: Paˇsteka R., Mikuˇska J., Meurers B. (Eds.): Understanding the Bouguer Anomaly: A Gravimetry Puzzle. Elsevier, Amsterdam, 113–125, doi: 10.1016/B978-0-12-812913-5.00006-3.