Using magnetic data for estimating the location of lateral boundaries and the depth of the shallow salt dome of Aji-Chai, East Azerbaijan Province, Iran

Document Type : Reply to comment on Paper


1 Institute of Geophysics, University of Tehran, Iran

2 University of Applied Science and Technology (UAST), Hamedan, Iran



Magnetic data play a significant role in the interpretation of various geologic structures using depth estimation methods and edge detection filters. In this study, we applied methods based on directional derivatives such as tilt-depth (TD), signum transform (ST), source distance (SD) and classical Euler deconvolution (ED) to estimate the depth of the magnetic sources. Moreover, to enhance the edges of magnetic field anomalies, we utilize the total horizontal derivative (THD), analytical signal (AS), tilt angle (TA), theta map (TM), hyperbolic tilt angle (HTA), the tilt angle of horizontal derivative (TAHG), and logistic function of total horizontal gradient (LTHD). These algorithms are tested on a synthetic magnetic model with noise and free noise to understand their performance. Since the edge detection filters are sensitive to noise, we carry out an upward continuation (UC) filter before the reduction of data to magnetic the pole to reduce the noise effect. After comparing the efficiency of the approaches in estimating the depth and horizontal lateral boundaries, these methods were applied to the data surveyed from the Aji-Chai salt dome in East Azerbaijan Province, Iran. The results obtained by the depth determination methods were compared with the drilling report of Iran’s geological survey and three-dimensional classical Euler deconvolution method.


Main Subjects

  1. Cordell, L. & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. In: Hinze W. J. (Editor). The Utility Of Regional Gravity And Magnetic Anomaly Maps, Society of Exploration Geophysics (SEG), 181–197.
  2. Roest W. R. J., Verhoef, J. & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116–125.
  3. Miller, H.G. & Singh, V. (1994). Potential fled tilt a new concept for location of potential field sources. Applied Geophysics, 32, 213–217.
  4. Wijns, C., Perez, C. & Kowalczyk, P. (2005). Theta Map: edge detection in magnetic data. Geophysics, 70, 39–43.
  5. Cooper, G. R. J. & Cowan, D.R. (2006). Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32(10), 1585-1591.
  6. Ferreira, F. J. F., de Souza, J., Bongiolo, A. B. S. & de Castro, L. G., (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle: Geophysics, 78: J33-J41.
  7. Alvandi, A., Toktay, H, D., & Pham, L, T. (2022b). Capability of improved Logistics filter in determining lateral boundaries and edges of gravity and magnetic anomalies Tuzgolu Area Turkey, Journal of Mining Engineering, 17(56), pp. 57-72. doi: 10.22034/ijme.2022.538984.1889.
  8. Eldosouky, A, M., Pham, L, T., Mohmed, H., &Pradhan, B. (2020). A comparative study of THG, AS, TA, Theta, TDX and LTHG techniques for improving source boundaries detection of magnetic data using synthetic models: a case study from G. Um Monqul, North Eastern Desert, Egypt. J. Afr. Earth Sci., 170 p. 103940, 10.1016/j.jafrearsci.2020.103940
  9. Pham, L, T., Oksum, E., & Do TD. (2019). Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica et Geophysica 54:143–155
  10. Alvandi, A., Toktay, H, D., & Nasri, S. (2022a). Application of direct source parameter imaging (direct local wave number) technique to the 2D gravity anomalies for depth determination of some geological structures. Acta Geophys. .
  11. Salem, A., Simon, W., Fairhead, J. D., Ravat, D. & Smith, R. (2007). Tilt-depth method: A simple depth estimation method using -order magnetic derivatives. The Leading Edge, 26(12), 1502-1505.
  12. de Souza, J., & Ferreira, F. J. F.(2015). The application of the Signum transform to the interpretation of magnetic anomalies. ASEG-PESA 2015, Geophysics and Geology together for Discovery, 24th International Geophysical Conference and Exhibition, Expanded Abstracts.
  13. Castro, F, R., Oliveira, S, P., De Souza, J., &Ferreira, FJF. (2018). GRAV-MAG SUITE: an open source MATLAB-based program for processing potential field data. VIII Simpósio Brasileiro de Geofísica. Pará, Brazil: Brazilian Geophysical Society.
  14. Cooper, G. R. J.(2015). Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data: Geophysics, 80(1): J1-J6.
  15. Prasad, K.N.D., Pham, L.T. & Singh, A.P. (2022). A Novel Filter “ImpTAHG” for Edge Detection and a Case Study from Cambay Rift Basin, India. Pure and Applied Geophysics, 179 (6), 2351-2364.
  16. Alvandi, A., Toktay, H, D., & Pham, L, T. (2022c). Interpretation of gravity data using logistic function and total horizontal gradient (LTHG) – A case study: Charak anticline, 7 (4), 401-412.
  17. Razavi, S.A. & Jafari, F., (2008) Potash exploration via magnetometry and gravity methods in AjiChai (East Azerbaijan) and Ghareh-Aghaj (Zanjan Province).  A Report in Geological Survey of Iran. pp: 75 (Persian).
  18. Abedi, M. (2018). An integrated approach to evaluate the Aji-Chai potash resources in Iran using potential field data. Journal of African Earth Sciences, (139), 379-391.
  19. Maghsoudi, M. (2021). Desert Landscapes and Landforms of Iran, Geography of the Physical Environment,
  20. Toktay, H. D. & Alvandi, A. (2021). Application of the analytic signal amplitude and the Bott-Smith formula as a simple and very fast depth determination method of gravity anomalies: Application on synthetic and field profile data. Journal of Indian Geophysical Union, 25, 9-19.
  21. Reid, A B, Allsop, J M, Granser, H, Millet A J and Somerton, I W 1990. Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55, 80–91.
  22. Thompson, D. T. 1982, EULDPH: A new technique for making computer-assisted depth estimates from magnetic data, Geophysics, 47, 31–37.
  23. Abtahi SM, Pedersen LB, Kamm J, Kalscheuer T. A New Reference Model for 3D Inversion of Airborne Magnetic Data in Hilly Terrain - A Case Study fromNorthern Sweden. Geophysics (2018) 83:B1–B12. doi:10.1190/geo2016-0331.1.