Geochemical prospectivity of Cu-mineralization through Concentration-Number fractal modeling and Prediction-Area plot: a case study in east Iran

Document Type : Research Paper


School of Mining Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.



The Birjand region is a part of the South Khorasan province, situated in the structural-magmatic zone of eastern Iran. As a part of the continental shelf, it forms from subduction during the Cenozoic and subsequent continental collisions. This region is favorable for copper and gold mineralization for various geological reasons. The ultimate goal of this study is to create a Cu geochemical potential map to delimit prone regions for further mining activities. A total of 2468 geochemical samples were gathered to run a 20-element analysis. Taking data preprocessing approaches such as correction of outlier data and data normalization into consideration, a fractal graph through Concentration-Number (C-N) model was produced to isolate different geochemical populations of Cu, Pb, Zn, Ag, Ba, and Ni for Cu targeting. Then, a Prediction-Area (P-A) graph was plotted for each geochemical variable to determine the weight of each evidence map. The results show that Barium map indicates a prediction rate of 72% and specifying 28% of the studied areas as mineralization prone areas. The zinc geochemical map presents an ore prediction rate of 65% and 35% of area as potential zone. In addition, copper with an ore prediction of 56% covered 44% of the Birjand region. Finally, a hybrid evidence map was overlaid. Accordingly, the geochemical potential areas are further located towards the south and south-east of Birjand, which are closely related. Moreover, there are highly favorable areas in the middle part. It is noteworthy that the copper potential map has higher efficiency over each individual geochemical evidence, with an ore prediction rate of 75% and occupying 25% of the area as favorable zones.


Main Subjects

[1] Lowell, J. D and Guilbert, J. M. (1970). Lateral and vertical alteration-mineralization zoning in porphyry ore deposits: Economic Geology, v. 65, p. 373-408.
[2] Harris J, Wilkinson L, Grunsky E, Heather K, Ayer J (1999). Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze greenstone belt, Ontario, Journal of Geochemical Exploration 67:301-334.
[3] Cheng Q (1999). Spatial and scaling modelling for geochemical anomaly separation, Journal of Geochemical exploration 65:175-194.
[4] Cheng, Q., Agterberg, F. and Bonham-Carter, G., (1996) A spatial analysis method for geochemical anomaly separation. Journal of Geochemical exploration, 56: 183-195.
[5] Ghavami-Riabi, R., Seyedrahimi-Niaraq, M., Khalokakaie, R. and Hazareh, M., (2010) U-spatial statistic data modeled on a probability diagram for investigation of mineralization phases and exploration of shear zone gold deposits. Journal of Geochemical exploration, 104: 27-33.
[6] Darabi-Golestan, F., Ghavami-Riabi, R., Khalokakaie, R., Asadi-Haroni, H., Seyedrahimi-Niaraq, M., 2013, Interpretation of lithogeochemical and geophysical data to identify the buried mineralized area in Cu-Au porphyry of Dalli-Northern Hill. Arabian Journal of Geosciences, 6:4499-4509.
[7] Seyedrahimi-Niaraq, M., Hekmatnejad, A., (2020). The efficiency and accuracy of probability diagram, spatial statistic and fractal methods in the identification of shear zone gold mineralization: a case study of the Saqqez gold ore district, NW Iran. Acta Geochimica,
[8] Qiuming C (2000). Multifractal theory and geochemical element distribution pattern, Earth Science-Journal of China University of Geosciences 25:311-318.
[9] Hawkes RAW, Webb HE (1979). Geochemistry in mineral exploration, 2nd edn. Academic Press, New York, 657 pp.
[10] Li, C.J., Ma, T.H., Shi, J.F., (2003). Application of a fractal method relating concentration and distances for separation of geochemical anomalies from background. J Geochem Explor 77: 167–175.
[11] Mandelbrot, B.B., (1983). The Fractal Geometry of Nature. WH Freeman, San Francisco, pp 1-468.
[12] Cheng, Q., Agterberg, F.P., Ballantyne, S.B., (1994). The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51: 109–130.
[13] Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., Sadeghi, B., 2022. Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals 12 (6), 689.
[14] Koohzadi, F., Afzal, P., Jahani, D., Pourkermani, M., 2021. Geochemical exploration for Li in regional scale utilizing Staged Factor Analysis (SFA) and Spectrum-Area (S-A) fractal model in north central Iran. Iranian Journal of Earth Sciences 13, 299-307.
[15] Pourgholam, M.M., Afzal, P., Adib, A., Rahbar, K., Gholinejad, M., 2022. Delineation of Iron Alteration Zones using Spectrum-Area Fractal Model and TOPSIS Decision-Making Method in Tarom Metallogenic Zone, NW Iran. Journal of Mining and Environment (JME) 13, 2, 503-525.
[16] Shahbazi, S., Ghaderi, M., Afzal, P., 2021. Prognosis of gold mineralization phases by multifractal modeling in the Zehabad epithermal deposit, NW Iran. Iranian Journal of Earth Sciences 13, 31-40.
[17] Torshizian, H., Afzal, P., Rahbar, K., Yasrebi, A.B., Wetherelt, A., Fyzollahhi, N., 2021. Application of modified wavelet and fractal modeling for detection of geochemical anomaly. Geochemistry, 81(4), 125800.
[18] Nabilou, Afzal, P., M., Arian, M., Adib, A., Kheyrollahi, H., Foudazi M., Ansarirad, P., 2022. The relationship between Fe mineralization and the magnetic basement structures using multifractal modeling in the Esfordi and Behabad Areas (BMD), central Iran. Acta Geologica Sinica-English Edition. 96(2), 591–606.
[19] Mahdizadeh, M., Afzal, P., Eftekhari, M., Ahangari, K., 2022. Geomechanical zonation using multivariate fractal modeling in Chadormalu iron mine, Central Iran. Bulletin of Engineering Geology and the Environment 81 (1), 1-11.
[20] Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N., (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J Geochem Explor 108: 220–232.
[21] Afzal, P., Dadashzadeh Ahari, H., Rashidnejad Omran, N., Aliyari, F., (2013). Delineation of gold mineralized zones using concentration-volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geology Reviews 55: 125-133.
[22] Delavar, S.T., Afzal, P., Borg, G., Rasa, I., Lotfi, M., Rashidnejad Omran, N., (2012). Delineation of mineralization zones using concentration-volume fractal method in Pb-Zn carbonate hosted deposits. J. Geochem. Explor. 118, 98–110.
[23] Zuo, R., (2011). Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl. Geochem. 26, S271–S273.
[24] Zuo, R., Wang, J., (2016). Fractal/multifractal modeling of geochemical data: a review. J. Geochem. Explor. 164, 33–41.
[25] Panahi, A., Cheng, Q., & Bonham-Carter, G. F. (2004). Modelling lake sediment geochemical distribution using principal component, indicator kriging and multifractal power-spectrum analysis: a case study from Gowganda, Ontario. Geochemistry: Exploration, Environment, Analysis, 4(1), 59-70.
[26] Mirzaie, M., Afzal, P., Adib, A., Rahimi, E., & Mohammadi, G. (2020). Detection of zones based on ore and gangue using fractal and multivariate analysis in Chah Gaz iron ore deposit, Central Iran. Journal of Mining and Environment, 11(2), 453-466.
[27] Nyka¨nen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.
[28] Yousefi, M., & Carranza, E. J. M. (2015). Prediction–area (P–A) plot and C–A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69-81.
[29] Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.
[30] Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. Statistical Applications in the Earth Sciences, 89, 171–183.nces, 85, 103-114.
[31] Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.
[32] Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., & Sun, W. (2016). Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (P-A) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China. Arabian Journal of Geosciences, 9, 298.
[33] Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75: 16–28.
[34] Nezhad, S. G., Mokhtari, A. R., & Rodsari, P. R. (2017). The true sample catchment basin approach in the analysis of stream sediment geochemical data. Ore Geology Reviews, 83, 127–134.
[35] Zhang, N., Zhou, K., & Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128, 84–96.
[36] Almasi, A., Yousefi, M., & Carranza, E. J. M. (2017). Prospectivityanalysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 91,1066–1080.
[37] Roshanravan, B., Aghajani, H., Yousefi, M., & Kreuzer, O. (2019). An improved prediction-area plot for prospectivity analysis of mineral deposits. Natural Resources Research, 28(3), 1089-1105.
[38] Kreuzer, O. P., Yousefi, M., & Nykänen, V. (2020). Introduction to the special issue on spatial modelling and analysis of ore forming processes in mineral exploration targeting. Ore Geology Reviews 119, 103391
[39] Yousefi, M., Carranza, E. J. M., Kreuzer, O. P., Nykänen, V., Hronsky, J. M. A., & Mihalasky, J. M. A. (2021). Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-Art and Outlook. Journal of Geochemical Exploration 229, 106839.
[40] Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
[41] Aghanabati, A. (2005). Geology of Iran. Geological Survey of Iran, 586 p.
[42] Behrouzi A., Nazer N. Kh. (1992). Geological Map of Basiran, 1:100000. GSI, Tehran.
[43] Tahernejad, M. M., Khalo Kakaei, R., & Ataei, M. (2018). Analyzing the effect of ore grade uncertainty in open pit mine planning; A case study of Rezvan iron mine, Iran. International Journal of Mining and Geo-Engineering, 52(1), 53-60.
[44] Riemann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied geochemistry, 17(3), 185-206.
[45] Nazarpour, A., Omran, N. R., & Paydar, G. R. (2015). Application of multifractal models to identify geochemical anomalies in Zarshuran Au deposit, NW Iran. Arabian Journal of Geosciences, 8(2), 877-889.
[46] Berberian M., & King G. C. P. (1981). Towards the Paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210-265.
[47] Khalifani, F., Bahroudi, A., Barak, S., & Abedi, M. (2019). An integrated Fuzzy AHP-VIKOR method for gold potential mapping in Saqez prospecting zone, Iran. Earth Observation and Geomatics Engineering, 3(1), 21-33.
[48] Grant, A. (1990). Multivariate statistical analyses of sediment geochemistry. Marine Pollution Bulletin, 21(6), 297-299.
[49] Zumlot, A. B. T. (2012). Multivariate statistical approach to geochemical methods in water quality factor identification; application to the shallow aquifer system of the Yarmouk Basin of north Jordan. Research Journal of Environmental and Earth Sciences, 4(7), 756-768.
[50] Ammar, F. H., Chkir, N., Zouari, K., Hamelin, B., Deschamps, P., & Aigoun, A. (2014). Hydro-geochemical processes in the Complexe Terminal aquifer of southern Tunisia: An integrated investigation based on geochemical and multivariate statistical methods. Journal of African Earth Sciences, 100, 81-95.
[51] Karar, K., Gupta, A. K., Kumar, A., & Biswas, A. K. (2006). Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and iron in PM 10 particulates at the two sites of Kolkata, India. Environmental Monitoring and Assessment, 120(1-3), 347-360.
[52] Sprovieri, R., Thunell, R., & Howe, M. (2020). Paleontological and geochemical analysis of three laminated sedimentary units of late Pliocene-early Pleistocene age from the Monte San Nicola section in Sicily. Rivista Italiana di Paleontologia e Stratigrafia, 92(3).
[53] Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., & Ghaderi, M. (2015). Iron and Fe–Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2), 211-241.
[54] Hirst, D. M. (1974). Geochemistry of Sediments from Eleven Black Sea Cores: Geochemistry.
[55] Malinowski, E. R., & Howery, D. G. (1980). Factor analysis in chemistry (p. 10). New York: Wiley.
[56] Wu, R., Chen, J., Zhao, J., Chen, J., & Chen, S. (2020). Identifying Geochemical Anomalies Associated with Gold Mineralization Using Factor Analysis and Spectrum–Area Multifractal Model in Laowan District, Qinling-Dabie Metallogenic Belt, Central China. Minerals, 10(3), 229.
[57] Richards, J., Wilkinson, D., & Ullrich, T. (2006). Geology of the Sari Gunay epithermal gold deposit, Northwest Iran. Econ. Geol. 101, 1455-1496.