[3] Li Y, M Onur. INSIM-BHP: A physics-based data-driven reservoir model for history matching and forecasting with bottomhole pressure and production rate data under waterflooding. J Comput Phys. 473 (2022) 111714, doi:
https://doi.org/10.1016/j.jcp.2022.111714.
[4] Ma X, K Zhang, J Wang, C Yao, Y Yang, H Sun, et al. An Efficient Spatial-Temporal Convolution Recurrent Neural Network Surrogate Model for History Matching. SPE J. 27 (2022) 1160-75, doi:
https://doi.org/10.2118/208604-PA.
[5] Lewis JM, S Lakshmivarahan, S Dhall. Dynamic data assimilation: a least squares approach. 1st ed. Cambridge University Press, New York, 2006.
[6] Evensen G. Sequential data assimilation with a nonlinear quasiâgeostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res-Oceans. 99 (1994) 10143-62, doi:
http://dx.doi.org/10.1029/94JC00572.
[7] Lorentzen R, K Fjelde, F Jonny, A Lage, N Geir, E Vefring. Underbalanced and low-head drilling operations: Real time interpretation of measured data and operational support. In: SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana (2001), doi:
https://doi.org/10.2118/71384-MS.
[9] Akter F, S Imtiaz, S Zendehboudi, K Hossain. Modified Ensemble Kalman filter for reservoir parameter and state estimation in the presence of model uncertainty. J Petrol Sci Eng. 199 (2021) 108323, doi:
https://doi.org/10.1016/j.petrol.2020.108323.
[10] Jahanbakhshi S, MR Pishvaie, RB Boozarjomehry. Impact of initial ensembles on posterior distribution of ensemble-based assimilation methods. J Petrol Sci Eng. 171 (2018) 82-98, doi:
https://doi.org/10.1016/j.petrol.2018.07.022.
[12] Zhang Y, Z Fan, D Yang, H Li, S Patil. Simultaneous estimation of relative permeability and capillary pressure for PUNQ-S3 model with a damped iterative-ensemble-Kalman-filter technique. SPE J. 22 (2017) 971 - 84, doi:
https://doi.org/10.2118/177846-PA.
[13] Xue L, S Gu, L Mi, L Zhao, Y Liu, Q Liao. An automated data-driven pressure transient analysis of water-drive gas reservoir through the coupled machine learning and ensemble Kalman filter method. J Petrol Sci Eng. 208 (2022) 109492, doi:
https://doi.org/10.1016/j.petrol.2021.109492.
[14] Nævdal G, T Mannseth, EH Vefring. Near-well reservoir monitoring through ensemble Kalman filter. In: SPE/DOE Improved Oil Recovery Symposium. Tulsa, Oklahoma (2002), doi:
https://doi.org/10.2118/75235-MS.
[16] Skjervheim JA, G Evensen, SI Aanonsen, BO Ruud, TA Johansen. Incorporating 4D seismic data in reservoir simulation models using ensemble Kalman filter. SPE J. 12 (2007) 282-92, doi:
https://doi.org/10.2118/95789-PA.
[18] Gao G, M Zafari, AC Reynolds. Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF. SPE J. 11 (2006) 506-15, doi:
http://dx.doi.org/10.2118/93324-PA.
[19] Gu Y, DS Oliver. History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter. SPE J. 10 (2005) 217 - 24, doi:
https://doi.org/10.2118/89942-PA.
[20] Lee K, S Jung, T Lee, J Choe. Use of clustered covariance and selective measurement data in ensemble smoother for three-dimensional reservoir characterization. J Energy Resour Technol. 139 (2017), doi:
https://doi.org/10.1115/1.4034443.
[21] Watanabe S, A Datta-Gupta. Use of phase streamlines for covariance localization in ensemble Kalman filter for three-phase history matching. SPE Reserv Eval Eng. 15 (2012) 273-89, doi:
https://doi.org/10.2118/144579-MS.
[24] Lorentzen RJ, G Nævdal, A Shafieirad. Estimating facies fields by use of the ensemble Kalman filter and distance functions--applied to shallow-marine environments. SPE J. 3 (2013) 146-58, doi:
http://dx.doi.org/10.2118/143031-PA.
[26] Evensen G. Data assimilation: the ensemble Kalman filter. 2nd ed. Springer Science & Business Media, New York, 2009.
[27] Bishop CH, BJ Etherton, SJ Majumdar. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon Weather Rev. 129 (2001) 420-36, doi:
http://dx.doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>
2.0.CO;2.
[28] Sakov P, PR Oke. Implications of the form of the ensemble transformation in the ensemble square root filters. Mon Weather Rev. 136 (2008) 1042-53, doi:
http://dx.doi.org/10.1175/2007MWR2021.1.
[32] Floris FJT, MD Bush, M Cuypers, F Roggero, AR Syversveen. Methods for quantifying the uncertainty of production forecasts: a comparative study. Pet Geosci. 7 (2001) 87-96, doi:
http://dx.doi.org/10.1144/petgeo.7.S.S87.
[34] Remy N, A Boucher, J Wu. Applied geostatistics with SGeMS: A user's guide. 1st ed. Cambridge University Press, New York, 2009.
[37] Kotsuki S, CH Bishop. Implementing Hybrid Background Error Covariance into the LETKF with Attenuation-Based Localization: Experiments with a Simplified AGCM. Mon Weather Rev. 150 (2022) 283-302, doi:
https://doi.org/10.1175/MWR-D-21-0174.1.
[38] Wernitz S, E Chatzi, B Hofmeister, M Wolniak, W Shen, R Rolfes. On noise covariance estimation for Kalman filter-based damage localization. Mech Syst Sig Process. 170 (2022) 108808, doi:
https://doi.org/10.1016/j.ymssp.2022.108808.
[39] Xing X, B Liu, W Zhang, J Wu, X Cao, Q Huang. An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation. J Mar Sci Eng. 9 (2021) 1156, doi:
https://doi.org/10.3390/jmse9111156.
[40] Moradi M, O Asghari, G Norouzi, M Riahi, R Sokooti. Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis. Int J Min Geo-Eng. 49 (2015) 131-42, doi:
http://dx.doi.org/10.22059/ijmge.2015.54636.