[1] Gadallah, M.R., Fisher, R., & Mamdouh, R. (2009). Exploration Geophysics. Berlin: Springer-Verlag Berlin Heidelberg. doi: http://doi.org/ 10.1007/978-3-540-85160-8
[2] Soleimani, K., Arab-Amiri, A. R., Kamkar Rouhani, A., Shamsaddini Nejad, M., & Momeni, F. (2019). Investigation of the accuracy of the results of geoelectrical surveys to determine the depth and thickness of bauxite layer in one of Jajarm bauxite deposits. JOURNAL OF RESEARCH ON APPLIED GEOPHYSICS, 4, 225-235.
[3] Aristodemou, E., & Thomas-Betts, A. (2000). DC resistivity and induced polarization investigations at a waste disposal site and its environments. Journal of Applied Geophysics, 44, 275-302.
[4] Binley, A., & Daily, W. (2003). The performance of electrical methods for assessing the integrity of geomembrane liners in landfill caps and waste storage ponds. European Journal of Environmental & Engineering Geophysics, 8, 227-237.
[5] De Carlo, L., Perri, M. P., Caputo, M. C., Deiana, R., Vurro, M., & Cassiani, G. (2013). Characterization of a dismissed landfill via electrical resistivity tomography and mise-à-la-masse method. Journal of Applied Geophysics, 98, 1-10
[6] Qarqori, K., Rouai, M., Moreau, F., Saracco, G., Dauteuil, O., Hermitte, D., Veslud, C. (2012). Geoelectrical Tomography Investigating and Modeling of Fractures Network around Bittit Spring (Middle Atlas, Morocco). International Journal of Geophysics, 2012, 1-13. doi:
https://doi.org/10.1155/2012/489634.
[7] Ramazi, H., & Mostafaie, K. (2013). Application of integrated geoelectrical methods in Marand (Iran) manganese deposit exploration. Arabian Journal of Geosciences, 6, 2961-2970
[8] Ferdows, S., & Ramazi, H. (2015). Application of the fractal method to determine the membership function parameter for geoelectrical data (case study: Hamyj copper deposit, Iran). Journal of Geophysics and Engineering, 12, 909-921.
[9] Mostafaie, K., & Ramazi, H. (2018). 3D model construction of induced polarization and resistivity data with quantifying uncertainties using geostatistical methods and drilling (Case study: Madan Bozorg, Iran). Journal of Mining and Environment, 9, 857-872. doi:
https://dx.doi.org/10.22044/jme.2018.6852.1516
[10] Yang, J., Liu, Z. H., & Wang, L. (2008). Effectiveness of Natural Field Induced Polarization for Detecting Polymetallic Deposits. Earth Science Frontiers, 15, 217-221.
[11] Flores, C., & Peralta-Ortega, S. (2009). Induced polarization with in-loop transient electromagnetic soundings: A case study of mineral discrimination at El Arco porphyry copper, Mexico. Journal of Applied Geophysics, 68, 423-436
[12] Daneshvar Saein, L., Rasa, I., Rashidnejad Omran, N., Moarefvand, P., & Afzal, P. (2012). Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran. Nonliner Processes in Geophysics, 19, 431-438
[13] Gurin, G., Tarasov, A., Ilyin, Y., & Titov, K. (2015). Application of the Debye decomposition approach to analysis of induced-polarization profiling data (Julietta gold-silver deposit, Magadan Region). Russian Geology and Geophysics, 56, 1757-1771.
[14] Mashhadi, S., & Ramazi, H. (2018). The Application of Resistivity and Induced Polarization Methods in Identification of Skarn Alteration Haloes: a Case Study in the Qale-alimoradkhan Area. Journal of Environmental and Engineering Geophysics, 23(3), 363-368
[15] Öğretmen, Z., & Şeren, A. (2014). Investigating fracture–cracked systems with geophysical methods in Bayburt Kıratlı travertine. Journal of Geophysics and Engineering, 11(6), 1-13. doi: https://doi.org/10.1088/1742-2132/11/6/065009
[16] Grandjean, G., & Gourry, J. (1996). GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). Journal of Applied Geophysics, 36(1), 19-30. doi:https://doi.org/10.1016/S0926-9851(96)00029-8
[17] Kadıoğlu, S. (2008). Photographing layer thicknesses and discontinuities in a marble quarry with 3D GPR visualization. J. Appl. Geophys., 64, 109-114. doi:https://doi.org/10.1016/j.jappgeo.2008.01.001
[18] Porsani, L., Sauck, W., & Junior, A. (2006). GPR for Mapping fractures and as a guide for extraction of ornamental granite from a quarry: a case study from southern Brazil. J. Appl. Geophys., 58, 177–187. doi:
https://doi.org/10.1016/j.jappgeo.2005.05.010
[19] Aydın, A., Yağız, S., Özpınar, Y., & Semiz, B. (2005, September 21-25). Investigation of travertine properties using geophysical methods. Proceedings of 1st International Symposium on Travertine.
[20] Yalçıner, C. (2013). Investigation of subsurface geometry of fissure–ridge travertine with GPR, Pamukkale, western Turkey. Journal of Geophysics and Engineering, 10(3). doi:https://doi.org/10.1088/1742-2132/10/3/035001
[21] Billi, A., Filippis, L., Poncia, P., Sella, P., & Faccenna, C. (2016). Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy). Geomorphology, 255, 63-80. doi:https://doi.org/10.1016/j.geomorph.2015.12.011.
[22] Particle In Cell Consulting LLC (2015). Finite Element Particle in Cell (FEM-PIC). Westlake village, CA. https://www.particleincell.com/2015/fem-pic/.
[23] Loke, M. H. (1996-2011). Tutorial: 2-D and 3-D electrical imaging surveys.
[24] Chambers, J. E., Wilkinson, P. B., Wardrop, D., Hameed, A., Hill, I., Jeffrey, C., Gunn, D. A. (2012). Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology, 17-25.
[25] Doetsch, J., Linde, N., Vogt, T., Binley, A., & Green, A. G. (2012). Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring. GEOPHYSICS, 207-218.
[26] Uhlemann, S., Chambers, J., Wilkinson, P., Maurer, H., Merritt, A., Meldrum, P., Dijkstra, T. (2017). Four-dimensional imaging of moisture dynamics during landslide reactivation. Journal of Geophysical Research: Earth Surface, 398-418.
[27] Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., & Binley, A. (2020). ResIPy, an intuitive open-source software for complex geoelectrical inversion/modeling. Computers & Geosciences, 137. doi: https://doi.org/10.1016/j.cageo.2020.104423.
[28] Binley, A. (2020). The Lancaster Invironment Centre. Retrieved from http://www.es.lancs.ac.uk/people/amb/Freeware/Freeware.htm.
[29] Geuzaine, C., & Remacle, J. F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International journal for numerical methods in engineering, 1309-1331.
[30] Abedi, M. (2020). A focused and constrained 2D inversion of potential feld geophysical data through Delaunay triangulation, a case study for iron-bearing targeting at the Shavaz deposit in Iran. Physics of the Earth and Planetary Interiors, 309, 106604.
[31] Abedi, M. (2022). Cooperative fuzzy-guided focused inversion for unstructured mesh modeling of potential field geophysics, a case study for imaging an oil-trapping structure. Acta Geophysica, DOI: 10.1007/s11600-022-00857-w.
[32] Danaei, Kh., Moradzadeh, A., Norouzi, G.H., Smith, R.S., Abedi, M., & Jodeiri Akbari Fam, H. (2022). 3D inversion of gravity data with unstructured mesh and least-squares QR-factorization (LSQR). Journal of Applied Geophysics, DOI: 10.1016/j.jappgeo.2022.104781.
[33] Talebi, M.A., Abedi, M., & Moradzadeh, A. (2022). Geoelectrical modeling of travertine rocks beneath a rough topographical relief using structured and unstructured meshes. Acta Geodaetica et Geophysica, 57, 351–372.
[34] Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge: Cambridge University Press. doi: https://doi.org/10.1017/CBO9781139167932.