[1] S. Li, Y. Jianie, I.-H. Hom, L. Mam, Q. Wang, and B. Yu, “Experimental and Numerical Analyses for Earth Pressure Distribution on High-Filled Cut-and-Cover Tunnels,” KSCE J. Civ. Eng., 2020, doi: 10.1007/s12205-020-1693-7.
[2] M. G. Spangler, “A PRACTICAL APPLICATION OF THE IMPERFECT DITCH METHOD OF CONSTRUCTION A BRIEF DISCUSSION IS PRESENTED OF THE PRINCIPLES ON WHICH MARSTON ’ S IMPERFECT DITCH METHOD IS BASED AND A,” Washington, DC Highw. Res. Board., vol. 37 of Proc, no. 37th Annual Meeting of the Highway Research Board, pp. 271–277, 1958.
[3] R. K. Taylor, “Induced-Trench Method of Culvert Installation.,” Highw Res. Rec., no. 443, pp. 15–31, 1973.
[4] J. A. Sladen and J. M. Oswell, “The induced trench method - a critical review and case history,” Can. Geotech. J., vol. 25, no. 3, pp. 541–549, 1988, doi: 10.1139/t88-059.
[5] J. Vaslestad, T. H. Johansen, and W. Holm, “Load reduction on rigid culverts beneath high fills: long-term behavior,” Transp. Res. Rec., no. 1415, pp. 58–68, 1993.
[6] A. Q. Gu, T. T. Guo, and X. P. Wang., “Experimental study on reducing load measurement using EPS of culvert under high-stacked soil,” Chinese J. Geotech. Eng., vol. 27, no. 5, p. 2005, 2005..
[7] R. P. McAffee and A. J. Valsangkar, “Field performance, centrifuge testing, and numerical modeling of an induced trench installation,” Can. Geotech. J., vol. 45, no. 1, pp. 85–101, 2008, doi: 10.1139/T07-086
[8] B. L. McGuigan and A. J. Valsangkar, “Centrifuge testing and
numerical analysis of box culverts installed in induced trenches,” Can. Geotech. J., vol. 47, no. 2, pp. 147–163, 2010, doi: 10.1139/T09-085.
[9] S. Li, I. H. Ho, L. Ma, Y. Yao, and C. Wang, “Load reduction on high-filled cut-and-cover tunnel using discrete element method,” Comput. Geotech., vol. 114, no. March 2019, doi: 10.1016/j.compgeo.2019.103149.
[10] J. Kang, F. Parker, and C. H. Yoo, “Soil-Structure Interaction and Imperfect Trench Installations for Deeply Buried Concrete Pipes,” J. Geotech. Geoenvironmental Eng., vol. 133, no. 3, pp. 277–285, 2007, doi: 10.1061/(asce)1090-0241(2007)133:3(277).
[11] S. Li, G. Han, I.-H. Ho, L. Ma, Q. Wang, and B. Yu, “Coupled Effect of Cross-Sectional Shape and Load Reduction on High-Filled Cut-and-Cover Tunnels ConsideringSoil–Structure Interaction,” Int. J. Geomech., vol. 20, no. 7, p. 04020082, 2020, doi: 10.1061/(asce)gm.1943-5622.0001696.
[12] S. Li, Y. Yao, I.-H. Ho, L. Ma, Q. Wang, and C. Wang, “Coupled Effect of Expanded Polystyrene and Geogrid on Load Reduction for High-Filled Cut-and-Cover Tunnels Using the Discrete-Element Method,” Int. J. Geomech., vol. 20, no. 6, p. 04020052, 2020, doi: 10.1061/(asce)gm.1943-5622.0001683.
[13] S. Li, Y. Jianie, I.-H. Ho, L. Ma, B. Yu, and C. Wang, “Evolution of Load Reduction for High-Filled Cut-and-Cover Tunnels Subjected to Soil Creep,” Int. J. Geomech., vol. 21, no. 9, 2021, doi: 10.1061/(asce)gm.1943-5622.0002089.
[14] B. Yu, J. Xia, S. Li, and L. Zhao, “Optimization Effects of Load Reduction for Earth Pressure on High-Filled Cut-and-Cover Tunnels Using the Discrete Element Method,” Adv. Civ. Eng., vol. 2021, 2021, doi: 10.1155/2021/8911818.
[15] L. M. Rodríguez, M. Arroyo, and M. M. Cano, “Use of tire-derived aggregate in tunnel cut-and-cover,” Can. Geotech. J., vol. 55, pp. 1–32, 2018, doi: https://doi.org/10.1139/cgj-2017-0446.
[16] ASTM-The American Society for Testing and Materials, “D 4253-00-Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table1,” West Conshohocken, PA 19428-2959, United States., 2000.
[17] Geosyntec Consultants, “Guidance Manual for Engineering Uses of Scrap Tires,” 2008.
[18] D. Cheng, “Usage Guide-Tire-Derived Aggregate (TDA),” California State, 2016.
[19] F. H. Kulhawy and P. W. Mayne, “Manual on Estimating Soil Properties for Foundation Design,” 1990.
[20] R. . Koerner, Designing with Geosynthetics, 5th ed. Pearson Prentice Hall, 2005.
[21] J. Han and D. Leshchinsky, “Geotextiles and Geomembranes Analysis of back-to-back mechanically stabilized earth walls,” Geotext. Geomembranes, vol. 28, no. 3, pp. 262–267, 2010, doi: 10.1016/j.geotexmem.2009.09.012.
[22] Y. Dong, J. Han, and X. Bai, “Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures,” Geotext. Geomembranes, vol. 29, 2010, doi: 10.1016/j.geotexmem.2010.10.007.
[23] C. H. Abdullah and T. B. Edil, “Behaviour of geogrid-reinforced load transfer platforms for an embankment on rammed aggregate piers,” Geosynth. Int., no. 3, 2007, doi: 10.1680/gein.2007.14.3.141.
[24] M. T. Adams and James G. Collin, “LARGE MODEL SPREAD FOOTING LOAD TESTS ON GEOSYNTHETIC,” J. Geotech. GEOENVIRONMENTAL Eng., no. January, pp. 66–72, 1997.
[25] S. F. Brown, J. Kwan, and N. H. Thom, “Identifying the key parameters that influence geogrid reinforcement of railway ballast,” vol. 25, pp. 326–335, 2007, doi: 10.1016/j.geotexmem.2007.06.003.
[26] J. Han and K. Akins, “Use of Geogrid-Reinforced and Pile-Supported Earth Structures,” Deep Found., pp. 668–679, 2002.
[27] C. L. Helstrom, D. N. Humphrey, and S. A. Hayden, “Geogrid Reinforced Pavement Structure in a Cold Region,” Cold Reg. Eng., no. 401, pp. 1–12, 2006.
[28] J. Huang and J. Han, “Geotextiles and Geomembranes 3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment,” Geotext. Geomembranes, vol. 27, no. 4, pp. 272–280, 2009, doi: 10.1016/j.geotexmem.2009.01.001.
[29] T. C. Kinney, K. S. Danielle, and J. Schuler, “Using Geogrids for Base Reinforcement as Measured by Falling Weight Deflectometer in Full-Scale Laboratory Study,” Transp. Res. Rec. 1611, pp. 70–77, 1998.
[30] X. Tang, G. R. Chehab, and A. Palomino, “International Journal of Pavement Engineering Evaluation of geogrids for stabilizing weak pavement subgrade,” Int. J. Pavement Eng., vol. 9, no. 6, pp. 413–429, 2008, doi: 10.1080/10298430802279827.
[31] Y. Xiaoming, “An assessment of the geometry effect of geosynthetics for base course reinforcements,” Int. J. Transp. Sci. Technol., vol. 1, no. 3, pp. 247–257, 2012, doi: 10.1260/2046-0430.1.3.247.