Geoelectrical characterization of a landslide surface for investigating hazard potency, a case study in the Tehran- North freeway, Iran

Document Type : Research Paper


School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran


Landslide, as a geohazard issue, causes enormous threats to human lives and properties. In order to characterize the subsurface prone to the landslide which is occurred in the Tehran-North freeway, Iran, a comprehensive study focused on geological field observations, and a geoelectrical survey as a cost-effective and fast, non-invasive geophysical measurement was conducted in the area. As a result of road construction, problems in this region have increased. The Vertical Electrical Sounding (VES) investigation in the landslide area has been carried out by the Schlumberger array for data acquisition, implementing eight survey profiles varying in length between 60 and 130 m. Based on the electrical resistivity models through a smoothness-constrained least-square inversion methodology, the landslide structure (i.e., depth of the mobilized material and potential sliding surface) is better defined. The inferred lithological units, accompanied by stratigraphical data from a borehole and geological investigations for the prone landslide region, consisted of a discontinuous slip surface, having a wide range of resistivity, observed to be characterized by tuff with silt. Electrical resistivity values above 150 Ωm indicate a basement of weathered marlstone and sand. Values between 15 and 150 Ωm illustrate a shale-content layer with outcrops in the area that is the reason for movement. The sliding surface is at a depth of about 12 m. The method used in this study is a good candidate to investigate the risk of landslides in this region and can be applied to other landslide areas where borehole exploration is inefficient and expensive due to local complications.


[1]    Fressard, M., Maquaire, O., Thiery, Y., Davidson, R., Lissak, C. (2016). Multi-method characterisation of an active landslide: Case study in the Pays d’Auge plateau (Normandy, France). Geomorphology. 270: p. 22–39. DOI: 10.1016/j.geomorph
[2]    Kamranzad, F., Mohasel Afshar, E., Mojarab, M., Memarian, H. (2016). Landslide hazard zonation in Tehran province using data-driven and AHP methods. Geoscience. 25 (97): p. 101–114.
[3]    Ehteshami-Moinabadi, M., Nasiri, S. (2019). Geometrical and structural setting of landslide dams of the Central Alborz: a link between earthquakes and landslide damming. Bull. Eng. Geol. Environ. 78 (1): p. 69–88. DOI: 10.1007/s10064-017-1021-8.
[4]    Rezaei, S., Shooshpasha, I., Rezaei, H. (2019). Reconstruction of landslide model from ERT, geotechnical, and field data, Nargeschal landslide, Iran. Bull. Eng. Geol. Environ. 78 (5): p. 3223–3237. DOI: 10.1007/s10064-018-1352-0.
[5]    Samodra, G., Ramadhan, M.F., Sartohadi, J., Setiawan, M.A., Christanto, N., Sukmawijaya, A. (2020). Characterization of displacement and internal structure of landslides from multitemporal UAV and ERT imaging. Landslides, 17 (10): p. 2455–2468. DOI: 10.1007/s10346-020-01428-0.
[6]    Yılmaz, S., Narman, C. (2015). 2-D electrical resistivity imaging for investigating an active landslide along a ridgeway in Burdur region, southern Turkey. Arab. J. Geosci. 8 (5): p. 3343–3349. DOI: 10.1007/s12517-014-1412-0.
[7]    Ling, C., Xu, Q., Zhang, Q., Ran, J., Lv, H. (2016). Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). J. Appl. Geophys. 131: p. 154–162. doi: 10.1016/j.jappgeo.2016.06.003.
 [8]   Perrone, A., Lapenna, V., Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Rev. 135: p. 65–82. doi: 10.1016/j.earscirev.2014.04.002.
[9]    Supper, R., Ottowitz, D., Jochum, B., Kim, J.H., Romer, A., Baron, I., Pfeiler, S., Lovisolo, M., Gruber, S., Vecchiotti, F. (2014). Geoelectrical monitoring: An innovative method to supplement landslide surveillance and early warning. Near Surf. Geophys. 12 (1): p. 133–150. DOI: 10.3997/1873-0604.2013060.
[10]  Blome, M., Maurer, H., Greenhalgh, S. (2011). Geoelectric experimental design - Efficient acquisition and exploitation of complete pole-bipole data sets. Geophysics. 76 (1). DOI: 10.1190/1.3511350.
[11]   Carpentier, S., Konz, M., Fischer, R., Anagnostopoulos, G., Meusburger, K., Schoeck, K. (2012). Geophysical imaging of shallow subsurface topography and its implication for shallow landslide susceptibility in the Urseren Valley, Switzerland. J. Appl. Geophys. 83: p. 46–56. doi: 10.1016/j.jappgeo.2012.05.001.
[12]  Kannaujiya, S., Chattoraj, S.L., Jayalath, D., Champati ray, P.K., Bajaj, K., Podali, S., Bisht, M.P.S. (2019). Integration of satellite remote sensing and geophysical techniques (electrical resistivity tomography and ground penetrating radar) for landslide characterization at Kunjethi (Kalimath), Garhwal Himalaya, India. Nat. Hazards. 97 (3): p. 1191–1208. DOI: 10.1007/s11069-019-03695-0.
[13]  Malehmir, A., Bastani, M., Krawczyk, C.M., Gurk. M., Ismail, N., Polom, U., Persson, L. (2013). Geophysical assessment and geotechnical investigation of quick-clay landslides - A Swedish case study. Near Surf. Geophys. 11 (3): p. 341–350. DOI: 10.3997/1873-0604.2013010.
[14]  Imani, P., Tian, G., Hadiloo, S., El-raouf, A.A. (2020). Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. Appl. Geophys. 184.
[15]  Meric, O., Garambois, S., Jongmans, D., Wathelet, M., Chatelain, J.L., Vengeon, J.M. (2005). Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Can. Geotech. J. 42 (4): p. 1105–1115. DOI: 10.1139/t05-034.
[16]  Rønning, J.S., Ganerød, G.V., Dalsegg, E., Reiser, F. (2014). Resistivity mapping as a tool for identification and characterisation of weakness zones in crystalline bedrock: definition and testing of an interpretational model. Bull. Eng. Geol. Environ. 73 (4): p. 1225–1244. DOI: 10.1007/s10064-013-0555-7.
[17]  Solberg, I.L., Hansen, L., Rønning, J.S., Haugen, E.D., Dalsegg, E.,  Tønnesen, J.F. (2012). Combined geophysical and geotechnical approach to ground investigations and hazard zonation of a quick clay area, mid Norway. Bull. Eng. Geol. Environ. 71 (1): p. 119–133. doi: 10.1007/s10064-011-0363-x.
[18]    Mita, M., Glazer, M., Kaczmarzyk, R., Dąbrowski, M., Mita, K. (2018). Case study of electrical resistivity tomography measurements used in landslides investigation, Southern Poland. Contemp. Trends Geosci. 7 (1): p. 110–126. DOI: 10.2478/ctg-2018-0007.
[19] de Bari, C., Lapenna, V., Perrone, A., Puglisi, C., Sdao, F. (2011). Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata region, southern Italy). Geomorphology. 133:34–46.
[20] Viero, A., Galgaro, A., Morelli, G., Breda, A., Francese, R.G. (2015). Investigations on the structural setting of a landslide-prone slope by means of three-dimensional electrical resistivity tomography. Nat. Hazards. 78 (2): p. 1369–1385. DOI: 10.1007/s11069-015-1777-8.
 [21] Falae, P.O., Kanungo, D.P., Chauhan, P.K.S., Dash, R.K. (2019). Electrical resistivity tomography (ERT) based subsurface characterisation of Pakhi Landslide, Garhwal Himalayas, India. Environ. Earth Sci. 78 (14). DOI: 10.1007/s12665-019-8430-x.
[22] Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., Sdao, F. (2005). 2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, southern Italy. Geophysics. 70 (3): p. 11–18. DOI: 10.1190/1.1926571.
[23]   Bellanova, J., Calamita, G., Giocoli, A., Luongo, R., Macchiato, M., Perrone, A., Uhlemann, S., Piscitelli, S. (2018). Electrical resistivity imaging for the characterization of the Montaguto landslide (southern Italy). Eng Geol. 243:272–281.
 [24] Jianjun, G., Zhang, Y.X., Xiao, L. (2020). An application of the high-density electrical resistivity method for detecting slide zones in deep-seated landslides in limestone areas. J. Appl. Geophys. 177. DOI: 10.1016/j.jappgeo.2020.104013.
[25]  BZP consult engineers. (2018). Engineering geology, sustainability analysis, and presenting sliding trench safety solutions in the area of ​​28 km of Tehran- North freeway.
[26]  Yassaghi, A., Abassi, A.R. (2005). Geometry and kinematic analysis of Laniz structural sub-zone; evidence for structural evlution of south central Alborz. Geoscience. 56: p. 152–167.
[27]  Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter. J., Calvert, T., Burns, R. (2004). Three-dimensional mapping of a landslide using a multi-geophysical approach: The Quesnel Forks landslide. Landslides. 1(1): p. 29–40. DOI: 10.1007/s10346-003-0008-7.
[28] Loke, M.H. (2015). Tutorial: 2D and 3D electrical imaging surveys.
[29] Barker, R.D., Loke, M.H. (1996) Practical techniques for 3D resistivity surveys and data inversion. Geophys. Prospect. 44 (3): p. 499–523.
[30]  Reynolds, J.M. (1997). An introduction to applied and environmental geophysics. An Introd. to Appl. Environ. Geophys. DOI: 10.1071/pvv2011n155.
[31]  Highland, L.M., Bobrowsky, P. (2008). The landslide Handbook A guide to understanding landslides. US Geol. Surv. Circ. 1325: p. 1–147, 2008, DOI: 10.3133/cir1325.