HEBF strategy: A hybrid evidential belief function in geospatial data analysis for mineral potential mapping

Document Type : Research Paper


1 School of Mining Engineering, College of Engineering, University of Tehran, Iran

2 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Department of Mining Engineering, University of Tehran


In integrating geospatial datasets for mineral potential mapping (MPM), the uncertainty model of MPM can be inferred from the Dempster – Shafer rules of combination. In addition to generating the uncertainty model, evidential belief functions (EBFs) present the belief, plausibility, and disbelief of MPM, whereby four models can be simultaneously utilized to facilitate the interpretation of mineral favourability output. To investigate the functionality and applicability of the EBFs, we selected the Naysian porphyry copper district located on the Urmia – Dokhtar magmatic belt in the northeast of Isfahan city, central Iran. Multidisciplinary datasets- that are geochemical and geophysical data, ASTER satellite images, Quickbird, and ground survey- were designed in a geospatial database to run MPM. Implementing the Dempster law through the intersection (And) and union (OR) operators led to different MPM performances. To amplify the accuracy of the generated favourability maps, a combinatory EBFs technique was applied in three ways: (1) just OR operator, (2) just And operator, and (3) combination of And and OR operators. The plausibility map (as mineral favourability map) was compared to Cu productivity values derived from drilled boreholes, where the MPM accuracy of the hybrid method was higher than each operator. Of note, the success rate of the hybrid method validated by 21 boreholes was about 84%, and it demarcates high favourability zones occupying 0.67 km2 of the studied area.


Main Subjects

[1] Bonham-Carter, G.F. (1994). Geographic Information Systems for Geoscientists Modeling with GIS, 1st ed. Pergamon, Ontario. doi: https://doi.org/10.1016/C2013-0-03864-9
[2] Cargill, S.M., & Clark, A.L. (1978). Report on the activity of IGCP Project 98. J. Int. Assoc. Math. Geol., 10, 411-417. doi: https://doi.org/10.1007/BF02461973
[3] Yousefi, M., Kreuzer, O.P., Nykänen, V., & Hronsky, J.M.A. (2019). Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111. doi: https://doi.org/10.1016/j.oregeorev.2019.103005
[4] Kreuzer, O.P., Yousef, M., & Nykänen, V. (2020). Introduction to the special issue on spatial modeling and analysis of oreforming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391.
[5] Yousef, M., Carranza, E.J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., & Mihalasky, M.J. (2021). Data analysis methods for prospectivity modeling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[6] Porwal, A., Carranza, E.J.M., & Hale, M. (2001). Extended weights-of-evidence modeling for predictive mapping of base metal deposit potential in Aravalli Province, western India. Explor. Min. Geol., 10, 273–287. doi: https://doi.org/10.2113/0100273
[7] Porwal, A., Carranza, E.J.M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Nat. Resour. Res., 12, 155–171. doi: https://doi.org/10.1023/A:1025171803637
[8] Oh, H.J., & Lee, S. (2010). Application of artificial neural network for gold-silver deposits potential mapping: A case study of Korea. Nat. Resour. Res., 19, 103–124. doi: https://doi.org/10.1007/s11053-010-9112-2
[9] Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, Gh.R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
[10] Abedi, M., Norouzi, G.H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Comput. Geosci., 46, 272-283.
[11] Carranza, E.J.M., & Laborte, A.G. (2015). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput. Geosci., 74, 60–70. doi: https://doi.org/10.1016/
[12] Carranza, E.J.M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.
[13] Billa, M., Stein, G., Guillou-Frottier, L., Tourlière, B., Bouchot, V., Lips, A.L., & Cassard, D. (2004). Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geol. Rev., 25, 39–67. doi:https://doi.org/10.1016/j.oregeorev.2004.01.002
[14] Abedi, M., Norouzi, G.H., & Fathianpour, N. (2012). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. Int. J. Appl. Earth Obs. Geoinf., 21, 556–567. doi:https://doi.org/10.1016/j.jag.2012.07.012
[15] Najafi, A., Karimpour, M.H., & Ghaderi, M. (2014). Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran. Int. J. Appl. Earth Obs. Geoinf., 33, 142–154. doi:https://doi.org/10.1016/
[16] Abedi, M., Torabi, S.A., & Norouzi, G.H. (2013). Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: Seridune copper deposit. Boll. di Geofis. Teor. ed Appl., 54, 145–164. doi:https://doi.org/10.4430/bgta0085
[17] Carranza, E.J.M. (2010). Improved wildcat modeling of mineral prospectivity. Resour. Geol., 60, 129–149. doi:https://doi.org/10.1111/j.1751-3928.2010.00121.x
[18] Carranza, E.J.M., van Ruitenbeek, F.J.A., Hecker, C., van der Meijde, M., & van der Meer, F.D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. Int. J. Appl. Earth Obs. Geoinf., 10, 374–387. doi: https://doi.org/10.1016/j.jag.2008.02.008
[19] Porwal, A., Carranza, E.J.M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Nat. Resour. Res., 15, 1–14. doi:https://doi.org/10.1007/s11053-006-9012-7
[20] Yousefi, M., & Carranza, E.J.M. (2015). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput. Geosci., 79, 69–81. doi: https://doi.org/10.1016/j.cageo.2015.03.007
[21] Luo, X., & Dimitrakopoulos, R. (2003). Data-driven fuzzy analysis in quantitative mineral resource assessment. Comput. Geosci. 29, 3–13. doi: https://doi.org/10.1016/S0098-3004(02)
[22] Nykänen, V., Groves, D.I., Ojala, V.J., Eilu, P., & Gardoll, S.J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper-gold deposits in the northern Fennoscandian shield, Finland. Aust. J. Earth Sci., 55, 25–38. doi: https://doi.org/10.1080/08120090701581372
[23] Yousefi, M., & Carranza, E.J.M. (2016). Data-Driven Index Overlay and Boolean Logic Mineral Prospectivity Modeling in Greenfields Exploration. Nat. Resour. Res., 25, 3–18. doi: https://doi.org/10.1007/s11053-014-9261-9
[24] Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. J. African Earth Sci., 128, 1–4. doi: https://doi.org/10.1016/j.jafrearsci.2017.02.023
[25] Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J. Geochemical Explor., 164, 94–106. doi: https://doi.org/10.1016/j.gexplo.2015.10.008
[26] Dempster, A.P. (1968). A generalization of the Bayesian inference. J. R. Stat. Soc., 30, 205–447.
[27] Dempster, A.P. (1967). Upper and lower probabilities induced by a multivariate mapping.pdf. Ann. Math. Stat., 38, 325–339.
[28] Shafar, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.
[29] An, P., Moon, W.M., & Bonham-Carter, G.F. (1994). Uncertainty management in integration of exploration data using the belief function. Nonrenewable Resour., 3, 60–71. doi:https://doi.org/10.1007/BF02261716
[30] An, P., Moon, W.M., & Bonham-Carter, G.F. (1994). An object-oriented knowledge representation structure for exploration data integration. Nonrenewable Resour., 3, 132–145.
[31] Moon, W.M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Trans. Geosci. Remote Sens., 28, 711–720.
[32] Abedi, M., Mostafavi Kashani, S.B., Norouzi, G.H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. J. African Earth Sci., 128, 127–146. doi:https://doi.org/10.1016/
[33] Carranza, E.J.M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geol. Rev. 22, 117–132. doi: https://doi.org/10.1016/S0169-1368(02)00111-7
[34] Park, N.W. (2011). Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ. Earth Sci., 62, 367–376. doi: https://doi.org/10.1007/s12665-010-0531-5
[35] Pourghasemi, H.R., & Beheshtirad, M. (2014). Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto Int., 30, 662–685.
[36] Arab Amiri, M., Karimi, M., & Alimohammadi Sarab, A. (2015). Hydrocarbon resources potential mapping using evidential belief functions and frequency ratio approaches, southeastern Saskatchewan, Canada. Can. J. Earth Sci., 52, 182–195. doi: https://doi.org/10.1139/cjes-2013-0193
[37] Samadzadegan, F., Sharifi, M.A., Noorollahi, Y., Itoi, R., & Moghaddam, M.K. (2013). Spatial data analysis for exploration of regional-scale geothermal resources. J. Volcanol. Geotherm. Res. 266, 69–83. doi: https://doi.org/10.1016/j.jvolgeores.2013.
[38] Mandelbrot, B.B. (1983). The Fractal Geometry of Nature, updated an. ed. Freeman, New York.
[39] Cheng, Q., Agterberg, F.P., & Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods. J. Geochemical Explor. 51, 109–130. doi: https://doi.org/10.1016/0375-6742(94)90013-2
[40] Afzal, P., Ahari, H.D., Omran, N.R., & Aliyari, F. (2013). Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geol. Rev., 55, 125–133. doi: https://doi.org/10.1016/j.oregeorev.2013.05.005
[41] Mohammadpour, M., Bahroudi, A., Abedi, M., Rahimipour, G., Jozanikohan, G., & Khalifani, F.M. (2019). Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging. J. Geochemical Explor., 200. doi: https://doi.org/10.1016/j.gexplo.2019.01.018
[42] Zuo, R., Agterberg, F.P., Cheng, Q., & Yao, L. (2009). Fractal characterization of the spatial distribution of geological point processes. Int. J. Appl. Earth Obs. Geoinf., 11, 394–402. doi: https://doi.org/10.1016/j.jag.2009.07.001
[43] Stocklin, J. (1968). Structural History and Tectonics of Iran: A Review, American Association of Petroleum Geologists. AAPG Bulletin. American Association of Petroleum Geologists.
[44] Aghanabati, A. (2004). Geology of Iran. Geological Survey of Iran publication (In Persian), Tehran, Iran.
[45] Berberian, F., & Berberian, M. (1981). Tectono-plutonic episodes in Iran. American Geophysical Union, Washington, pp. 5–32. doi: https://doi.org/10.1029/GD003p0005
[46] McQuarrie, N., Stock, J.M., Verdel, C., & Wernicke, B.P. (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett., 30, 1-4. doi:https://doi.org/10.1029/2003GL017992
[47] Afshooni, S.Z., Mirnejad, H., Esmaeily, D., & Asadi Haroni, H.A. (2013). Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geol. Rev., 54, 214–232. doi: https://doi.org/10.1016/j.oregeorev.2013.04.004
[48] Afzal, P., Khakzad, A., Moarefvand, P., Omran, N.R., Esfandiari, B., & Fadakar, Y. (2010). Geochemical anomaly separation by multifractal modeling in Kahang ( Gor Gor ) porphyry system , Central Iran. J. Geochemical Explor., 104, 34–46. doi: https://doi.org/10.1016/j.gexplo.2009.11.003
[49] Tabatabaei, S.H., & Asadi Haroni, H. (2006). Geochemical characteristics of Gor GorCu–Mo porphyry system, in: 25th Iranian Symposium on Geosciences. Geological Survey of Iran, Tehran, Iran, p. 60.
[50] Zarnab. Co, 2011. Geological and alteration studies of Kahang area. Isfahan.
[51] Sillitoe, R.H. (2010). Porphyry Copper Systems. Econ. Geol., 105, 3-41. doi: https://doi.org/10.2113/gsecongeo.105.1.3
[52] Yousefi, M. (2017). Analysis of Zoning Pattern of Geochemical Indicators for Targeting of Porphyry-Cu Mineralization: A Pixel-Based Mapping Approach. Nat. Resour. Res., 26, 429-441. doi: https://doi.org/10.1007/s11053-017-9334-7
[53] Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geol. Rev., 83, 200-214. doi: https://doi.org/10.1016/j.oregeorev.2016.12.024
[54] Abedi, M., Fournier, D., Devriese, S.G.R., & Oldenburg, D.W. (2018). Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran. J. Appl. Geophys., 152, 188–202. doi: https://doi.org/10.1016/j.jappgeo.2018.04.001
[55] John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Graybeal, F.T., Mars, J.C., McPhee, D.K., & Seal, R.R., others, (2010). Porphyry copper deposit model. Sci. Investig. Rep. 169.
[56] Cardoso-Fernandes, J., Teodoro, A.C., & Lima, A. (2018). Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites. Int. J. Appl. Earth Obs. Geoinf., 76, 10–25. doi: https://doi.org/10.1016/j.jag.2018.11.001
[57] Carrino, T.A., Crósta, A.P., Toledo, C.L.B., & Silva, A.M. (2018). Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf., 64, 287–300. doi: https://doi.org/10.1016/j.jag.2017.05.004
[58] Liu, L., Feng, J., Rivard, B., Xu, X., Zhou, J., Han, L., Yang, J., & Ren, G. (2018). Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China. Int. J. Appl. Earth Obs. Geoinf., 64, 275–286. doi:https://doi.org/10.1016/j.jag.2017.03.013
[59] Ali, E., Abdegalil, M.Y., & Musa, A.E. (2016). Assessment of Image Ratio Technique for Gold Exploration in Arid Region Using Landsat ETM + 7: Limitations and Possible Source of Misinterpretations, 4, 17–23. doi:https://doi.org/10.1007/
[60] Ibrahim, O., Mamfe, V., Nsofor, C.J., Shar, J.T., Sanusi, M., & Ozigis, M.S. (2014). Mineral Detection and Mapping Using Band Ratioing and Crosta Technique in Bwari Area Council, Abuja Nigeria. Int. J. Sci. Eng. Res., 5, 1100-1108.
[61] Feizi, F., & Mansouri, E. (2014). Recognition of a porphyry system using ASTER data in Bideghan – Qom province (central of Iran). Solid Earth Discuss. 6, 1765–1798. doi: https://doi.org/10.5194/sed-6-1765-2014
[62] Honarmand, M., Ranjbar, H., & Shahabpour, J. (2012). Application of Principal Component Analysis and Spectral Angle Mapper in the Mapping of Hydrothermal Alteration in the Jebal-Barez Area, Southeastern Iran. Resour. Geol. 62, 119–139. doi: https://doi.org/10.1111/j.1751-3928.2012.00184.x
[63] Han, L., Liu, Z., Ning, Y., & Zhao, Z. (2018). Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Adv. Sp. Res., 62, 2480–2493. doi:https://doi.org/10.1016/j.asr.2018.07.030
[64] Masoud, A.A., & Koike, K. (2011). Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS J. Photogramm. Remote Sens., 66, 818–832. doi:https://doi.org/10.1016/j.isprsjprs.2011.08.003
[65] Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 2: Line segments linking and merging. Remote Sens., 6, 11468–11493. doi:https://doi.org/10.3390/rs61111468
[66] Mami Khalifani, F., Bahroudi, A., Aliyari, F., Abedi, M., Yousefi, M., & Mohammadpour, M. (2019). Generation of an efficient structural evidence layer for mineral exploration targeting. Journal of African Earth Sciences, Volume160, 2019,103609.
[67] Biswas, R., & Sil, J. (2012). An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets. Procedia Technol., 4, 820–824. doi: https://doi.org/10.1016/j.protcy.2012.05.134
[68] Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sens., 6, 5938–5958. doi: https://doi.org/10.3390/rs6075938
[69] Sanjay, P.R., & Naoghare, M.M. (2015). Review on Determination of Edges by Automatic Threshold Value Generation. Int. J. Comput. Sci. Mob. Comput., 4, 58–66.
[70] Wang, Y., & Li, J. (2015). An Improved Canny Algorithm with Adaptive Threshold Selection. EDP Sci., 2015 7, 1–7.
[71] Quackenbush, L.J. (2004). A Review of Techniques for Extracting Linear Features from Imagery. Photogramm. Eng. Remote Sens., 70, 1383–1392. doi: https://doi.org/
[72] Wang, J., & Howarth, P.J. (1990). Use of the Hough Transform in Automated Lineament Detection. IEEE Trans. Geosci. Remote Sens., 28, 561–567. doi: https://doi.org/10.1109/
[73] Mohammadpour, M., Bahroudi, A., & Abedi, M. (2020). Automatic Lineament Extraction Method in Mineral Exploration Using CANNY Algorithm and Hough Transform. Geotectonics, 54 (3), 366-382.
[74] Ajayakumar, P., Rajendran, S., & Mahadevan, T.M. (2017). Geophysical lineaments of Western Ghats and adjoining coastal areas of central Kerala, southern India and their temporal development. Geosci. Front., 8, 1089–1104. doi: https://doi.org
[75] Miller, H.G., & Singh, V. (1994). Potential field tilt a new concept for location of potential field sources. J. Appl. Geophys., 32, 213–217.
[76] Saein, L.D., & Afzal, P. (2017). Correlation between Mo mineralization and faults using geostatistical and fractal modeling in porphyry deposits of Kerman Magmatic Belt, SE Iran. J. Geochemical Explor., 181, 333–343. doi:https://doi.org
[77] Kavoshgaran Company Report. (2010). Soilgeochemical Explorations in Kahang Area, scale: 1:5000. Tehran, Iran.
[78] Shepard, D. (1968). A two-dimensional interpolation for irregularly-spaced data function, in: Proceedings of the 1968 ACM National Conference. pp. 517–524. doi:https://doi.org/
[79] Oskooi, B., & Abedi, M. (2015). An airborne magnetometry study across Zagros collision zone along Ahvaz–Isfahan route in Iran. Journal of Applied Geophysics, 123, 112-122.
[80] Abedi, M., & Oskooi, B. (2015). A combined magnetometry and gravity study across Zagros orogeny in Iran. Tectonophysics, 664 (28),164-175.
[81] Abedi, M., Dominique, F., Devriese, S.G.R., & Oldenburgb, D.W. (2018). Potential field signatures along the Zagros collision zone in Iran. Tectonophysics, 722 (2), 25-42.
[82] Cheng, Q. (1999). Multifractality and Spatial Statistics. Comput. Geosci., 25, 949–961. doi :https://doi.org/10.1016/S0098-3004(99)
[83] Wang, G., Zhang, S., Yan, C., Xu, G., Ma, M., Li, K., & Feng, Y. (2012). Application of the multifractal singular value decomposition for delineating geophysical anomalies associated with molybdenum occurrences in the Luanchuan ore field (China). J. Appl. Geophys., 86, 109–119. doi:https://doi.org
[84] Wang, W., Zhao, J., & Cheng, Q. (2013). Application of singularity index mapping technique to gravity/magnetic data analysis in southeastern Yunnan mineral district, China. J. Appl. Geophys., 92, 39–49. doi:https://doi.org/10.1016/j.jappgeo.2013.