[1] Bonham-Carter, G.F. (1994). Geographic Information Systems for Geoscientists Modeling with GIS, 1st ed. Pergamon, Ontario. doi: https://doi.org/10.1016/C2013-0-03864-9
[3] Yousefi, M., Kreuzer, O.P., Nykänen, V., & Hronsky, J.M.A. (2019). Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting. Ore Geology Reviews, 111. doi:
https://doi.org/10.1016/j.oregeorev.2019.103005
[4] Kreuzer, O.P., Yousef, M., & Nykänen, V. (2020). Introduction to the special issue on spatial modeling and analysis of oreforming processes in mineral exploration targeting. Ore Geology Reviews, 119, 103391.
[5] Yousef, M., Carranza, E.J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M.A., & Mihalasky, M.J. (2021). Data analysis methods for prospectivity modeling as applied to mineral exploration targeting: State-of-the-art and outlook. Journal of Geochemical Exploration, 229, 106839.
[6] Porwal, A., Carranza, E.J.M., & Hale, M. (2001). Extended weights-of-evidence modeling for predictive mapping of base metal deposit potential in Aravalli Province, western India. Explor. Min. Geol., 10, 273–287. doi: https://doi.org/10.2113/0100273
[7] Porwal, A., Carranza, E.J.M., & Hale, M. (2003). Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Nat. Resour. Res., 12, 155–171. doi: https://doi.org/10.1023/A:1025171803637
[8] Oh, H.J., & Lee, S. (2010). Application of artificial neural network for gold-silver deposits potential mapping: A case study of Korea. Nat. Resour. Res., 19, 103–124. doi: https://doi.org/10.1007/s11053-010-9112-2
[9] Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, Gh.R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940.
[10] Abedi, M., Norouzi, G.H., & Bahroudi, A. (2012). Support vector machine for multi-classification of mineral prospectivity areas. Comput. Geosci., 46, 272-283.
[11] Carranza, E.J.M., & Laborte, A.G. (2015). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput. Geosci., 74, 60–70. doi: https://doi.org/10.1016/
j.cageo.2014.10.004
[12] Carranza, E.J.M. (2009). Geochemical anomaly and mineral prospectivity mapping in GIS. Elsevier.
[13] Billa, M., Stein, G., Guillou-Frottier, L., Tourlière, B., Bouchot, V., Lips, A.L., & Cassard, D. (2004). Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geol. Rev., 25, 39–67. doi:https://doi.org/10.1016/j.oregeorev.2004.01.002
[14] Abedi, M., Norouzi, G.H., & Fathianpour, N. (2012). Fuzzy outranking approach: A knowledge-driven method for mineral prospectivity mapping. Int. J. Appl. Earth Obs. Geoinf., 21, 556–567. doi:
https://doi.org/10.1016/j.jag.2012.07.012
[15] Najafi, A., Karimpour, M.H., & Ghaderi, M. (2014). Application of fuzzy AHP method to IOCG prospectivity mapping: A case study in Taherabad prospecting area, eastern Iran. Int. J. Appl. Earth Obs. Geoinf., 33, 142–154. doi:https://doi.org/10.1016/
j.jag.2014.05.003
[16] Abedi, M., Torabi, S.A., & Norouzi, G.H. (2013). Application of fuzzy AHP method to integrate geophysical data in a prospect scale, a case study: Seridune copper deposit. Boll. di Geofis. Teor. ed Appl., 54, 145–164. doi:https://doi.org/10.4430/bgta0085
[17] Carranza, E.J.M. (2010). Improved wildcat modeling of mineral prospectivity. Resour. Geol., 60, 129–149. doi:https://doi.org/10.1111/j.1751-3928.2010.00121.x
[18] Carranza, E.J.M., van Ruitenbeek, F.J.A., Hecker, C., van der Meijde, M., & van der Meer, F.D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. Int. J. Appl. Earth Obs. Geoinf., 10, 374–387. doi: https://doi.org/10.1016/j.jag.2008.02.008
[19] Porwal, A., Carranza, E.J.M., & Hale, M. (2006). A hybrid fuzzy weights-of-evidence model for mineral potential mapping. Nat. Resour. Res., 15, 1–14. doi:https://doi.org/10.1007/s11053-006-9012-7
[20] Yousefi, M., & Carranza, E.J.M. (2015). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Comput. Geosci., 79, 69–81. doi: https://doi.org/10.1016/j.cageo.2015.03.007
[21] Luo, X., & Dimitrakopoulos, R. (2003). Data-driven fuzzy analysis in quantitative mineral resource assessment. Comput. Geosci. 29, 3–13. doi: https://doi.org/10.1016/S0098-3004(02)
00078-X
[22] Nykänen, V., Groves, D.I., Ojala, V.J., Eilu, P., & Gardoll, S.J. (2008). Reconnaissance-scale conceptual fuzzy-logic prospectivity modeling for iron oxide copper-gold deposits in the northern Fennoscandian shield, Finland. Aust. J. Earth Sci., 55, 25–38. doi: https://doi.org/10.1080/08120090701581372
[23] Yousefi, M., & Carranza, E.J.M. (2016). Data-Driven Index Overlay and Boolean Logic Mineral Prospectivity Modeling in Greenfields Exploration. Nat. Resour. Res., 25, 3–18. doi: https://doi.org/10.1007/s11053-014-9261-9
[24] Yousefi, M., & Nykänen, V. (2017). Introduction to the special issue: GIS-based mineral potential targeting. J. African Earth Sci., 128, 1–4. doi: https://doi.org/10.1016/j.jafrearsci.2017.02.023
[25] Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J. Geochemical Explor., 164, 94–106. doi: https://doi.org/10.1016/j.gexplo.2015.10.008
[26] Dempster, A.P. (1968). A generalization of the Bayesian inference. J. R. Stat. Soc., 30, 205–447.
[27] Dempster, A.P. (1967). Upper and lower probabilities induced by a multivariate mapping.pdf. Ann. Math. Stat., 38, 325–339.
[28] Shafar, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.
[29] An, P., Moon, W.M., & Bonham-Carter, G.F. (1994). Uncertainty management in integration of exploration data using the belief function. Nonrenewable Resour., 3, 60–71. doi:https://doi.org/10.1007/BF02261716
[30] An, P., Moon, W.M., & Bonham-Carter, G.F. (1994). An object-oriented knowledge representation structure for exploration data integration. Nonrenewable Resour., 3, 132–145.
[31] Moon, W.M. (1990). Integration of geophysical and geological data using evidential belief function. IEEE Trans. Geosci. Remote Sens., 28, 711–720.
[32] Abedi, M., Mostafavi Kashani, S.B., Norouzi, G.H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. J. African Earth Sci., 128, 127–146. doi:https://doi.org/10.1016/
j.jafrearsci.2016.09.028
[33] Carranza, E.J.M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geol. Rev. 22, 117–132. doi: https://doi.org/10.1016/S0169-1368(02)00111-7
[34] Park, N.W. (2011). Application of Dempster-Shafer theory of evidence to GIS-based landslide susceptibility analysis. Environ. Earth Sci., 62, 367–376. doi: https://doi.org/10.1007/s12665-010-0531-5
[35] Pourghasemi, H.R., & Beheshtirad, M. (2014). Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto Int., 30, 662–685.
[36] Arab Amiri, M., Karimi, M., & Alimohammadi Sarab, A. (2015). Hydrocarbon resources potential mapping using evidential belief functions and frequency ratio approaches, southeastern Saskatchewan, Canada. Can. J. Earth Sci., 52, 182–195. doi: https://doi.org/10.1139/cjes-2013-0193
[37] Samadzadegan, F., Sharifi, M.A., Noorollahi, Y., Itoi, R., & Moghaddam, M.K. (2013). Spatial data analysis for exploration of regional-scale geothermal resources. J. Volcanol. Geotherm. Res. 266, 69–83. doi: https://doi.org/10.1016/j.jvolgeores.2013.
10.003
[38] Mandelbrot, B.B. (1983). The Fractal Geometry of Nature, updated an. ed. Freeman, New York.
[39] Cheng, Q., Agterberg, F.P., & Ballantyne, S.B. (1994). The separation of geochemical anomalies from background by fractal methods. J. Geochemical Explor. 51, 109–130. doi: https://doi.org/10.1016/0375-6742(94)90013-2
[40] Afzal, P., Ahari, H.D., Omran, N.R., & Aliyari, F. (2013). Delineation of gold mineralized zones using concentration–volume fractal model in Qolqoleh gold deposit, NW Iran. Ore Geol. Rev., 55, 125–133. doi: https://doi.org/10.1016/j.oregeorev.2013.05.005
[41] Mohammadpour, M., Bahroudi, A., Abedi, M., Rahimipour, G., Jozanikohan, G., & Khalifani, F.M. (2019). Geochemical distribution mapping by combining number-size multifractal model and multiple indicator kriging. J. Geochemical Explor., 200. doi: https://doi.org/10.1016/j.gexplo.2019.01.018
[42] Zuo, R., Agterberg, F.P., Cheng, Q., & Yao, L. (2009). Fractal characterization of the spatial distribution of geological point processes. Int. J. Appl. Earth Obs. Geoinf., 11, 394–402. doi: https://doi.org/10.1016/j.jag.2009.07.001
[43] Stocklin, J. (1968). Structural History and Tectonics of Iran: A Review, American Association of Petroleum Geologists. AAPG Bulletin. American Association of Petroleum Geologists.
[44] Aghanabati, A. (2004). Geology of Iran. Geological Survey of Iran publication (In Persian), Tehran, Iran.
[45] Berberian, F., & Berberian, M. (1981). Tectono-plutonic episodes in Iran. American Geophysical Union, Washington, pp. 5–32. doi: https://doi.org/10.1029/GD003p0005
[46] McQuarrie, N., Stock, J.M., Verdel, C., & Wernicke, B.P. (2003). Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett., 30, 1-4. doi:
https://doi.org/10.1029/2003GL017992
[47] Afshooni, S.Z., Mirnejad, H., Esmaeily, D., & Asadi Haroni, H.A. (2013). Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geol. Rev., 54, 214–232. doi: https://doi.org/10.1016/j.oregeorev.2013.04.004
[48] Afzal, P., Khakzad, A., Moarefvand, P., Omran, N.R., Esfandiari, B., & Fadakar, Y. (2010). Geochemical anomaly separation by multifractal modeling in Kahang ( Gor Gor ) porphyry system , Central Iran. J. Geochemical Explor., 104, 34–46. doi:
https://doi.org/10.1016/j.gexplo.2009.11.003
[49] Tabatabaei, S.H., & Asadi Haroni, H. (2006). Geochemical characteristics of Gor GorCu–Mo porphyry system, in: 25th Iranian Symposium on Geosciences. Geological Survey of Iran, Tehran, Iran, p. 60.
[50] Zarnab. Co, 2011. Geological and alteration studies of Kahang area. Isfahan.
[51] Sillitoe, R.H. (2010). Porphyry Copper Systems. Econ. Geol., 105, 3-41. doi: https://doi.org/10.2113/gsecongeo.105.1.3
[52] Yousefi, M. (2017). Analysis of Zoning Pattern of Geochemical Indicators for Targeting of Porphyry-Cu Mineralization: A Pixel-Based Mapping Approach. Nat. Resour. Res., 26, 429-441. doi: https://doi.org/10.1007/s11053-017-9334-7
[53] Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geol. Rev., 83, 200-214. doi: https://doi.org/10.1016/j.oregeorev.2016.12.024
[54] Abedi, M., Fournier, D., Devriese, S.G.R., & Oldenburg, D.W. (2018). Integrated inversion of airborne geophysics over a structural geological unit: A case study for delineation of a porphyry copper zone in Iran. J. Appl. Geophys., 152, 188–202. doi: https://doi.org/10.1016/j.jappgeo.2018.04.001
[55] John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Graybeal, F.T., Mars, J.C., McPhee, D.K., & Seal, R.R., others, (2010). Porphyry copper deposit model. Sci. Investig. Rep. 169.
[56] Cardoso-Fernandes, J., Teodoro, A.C., & Lima, A. (2018). Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites. Int. J. Appl. Earth Obs. Geoinf., 76, 10–25. doi: https://doi.org/10.1016/j.jag.2018.11.001
[57] Carrino, T.A., Crósta, A.P., Toledo, C.L.B., & Silva, A.M. (2018). Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf., 64, 287–300. doi: https://doi.org/10.1016/j.jag.2017.05.004
[58] Liu, L., Feng, J., Rivard, B., Xu, X., Zhou, J., Han, L., Yang, J., & Ren, G. (2018). Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China. Int. J. Appl. Earth Obs. Geoinf., 64, 275–286. doi:
https://doi.org/10.1016/j.jag.2017.03.013
[59] Ali, E., Abdegalil, M.Y., & Musa, A.E. (2016). Assessment of Image Ratio Technique for Gold Exploration in Arid Region Using Landsat ETM + 7 : Limitations and Possible Source of Misinterpretations, 4, 17–23. doi:https://doi.org/10.1007/
BF02286438
[60] Ibrahim, O., Mamfe, V., Nsofor, C.J., Shar, J.T., Sanusi, M., & Ozigis, M.S. (2014). Mineral Detection and Mapping Using Band Ratioing and Crosta Technique in Bwari Area Council, Abuja Nigeria. Int. J. Sci. Eng. Res., 5, 1100-1108.
[61] Feizi, F., & Mansouri, E. (2014). Recognition of a porphyry system using ASTER data in Bideghan – Qom province (central of Iran). Solid Earth Discuss. 6, 1765–1798. doi: https://doi.org/10.5194/sed-6-1765-2014
[62] Honarmand, M., Ranjbar, H., & Shahabpour, J. (2012). Application of Principal Component Analysis and Spectral Angle Mapper in the Mapping of Hydrothermal Alteration in the Jebal-Barez Area, Southeastern Iran. Resour. Geol. 62, 119–139. doi: https://doi.org/10.1111/j.1751-3928.2012.00184.x
[63] Han, L., Liu, Z., Ning, Y., & Zhao, Z. (2018). Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. Adv. Sp. Res., 62, 2480–2493. doi:https://doi.org/10.1016/j.asr.2018.07.030
[64] Masoud, A.A., & Koike, K. (2011). Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. ISPRS J. Photogramm. Remote Sens., 66, 818–832. doi:https://doi.org/10.1016/j.isprsjprs.2011.08.003
[65] Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-based toolbox for tectonic lineament analysis from satellite images and DEMs, part 2: Line segments linking and merging. Remote Sens., 6, 11468–11493. doi:https://doi.org/10.3390/rs61111468
[66] Mami Khalifani, F., Bahroudi, A., Aliyari, F., Abedi, M., Yousefi, M., & Mohammadpour, M. (2019). Generation of an efficient structural evidence layer for mineral exploration targeting. Journal of African Earth Sciences, Volume160, 2019,103609.
[67] Biswas, R., & Sil, J. (2012). An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets. Procedia Technol., 4, 820–824. doi: https://doi.org/10.1016/j.protcy.2012.05.134
[68] Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sens., 6, 5938–5958. doi: https://doi.org/10.3390/rs6075938
[69] Sanjay, P.R., & Naoghare, M.M. (2015). Review on Determination of Edges by Automatic Threshold Value Generation. Int. J. Comput. Sci. Mob. Comput., 4, 58–66.
[70] Wang, Y., & Li, J. (2015). An Improved Canny Algorithm with Adaptive Threshold Selection. EDP Sci., 2015 7, 1–7.
[71] Quackenbush, L.J. (2004). A Review of Techniques for Extracting Linear Features from Imagery. Photogramm. Eng. Remote Sens., 70, 1383–1392. doi: https://doi.org/
10.14358/PERS.70.12.1383
[72] Wang, J., & Howarth, P.J. (1990). Use of the Hough Transform in Automated Lineament Detection. IEEE Trans. Geosci. Remote Sens., 28, 561–567. doi: https://doi.org/10.1109/
TGRS.1990.572949
[73] Mohammadpour, M., Bahroudi, A., & Abedi, M. (2020). Automatic Lineament Extraction Method in Mineral Exploration Using CANNY Algorithm and Hough Transform. Geotectonics, 54 (3), 366-382.
[74] Ajayakumar, P., Rajendran, S., & Mahadevan, T.M. (2017). Geophysical lineaments of Western Ghats and adjoining coastal areas of central Kerala, southern India and their temporal development. Geosci. Front., 8, 1089–1104. doi:
https://doi.org
/10.1016/j.gsf.2016.11.005
[75] Miller, H.G., & Singh, V. (1994). Potential field tilt a new concept for location of potential field sources. J. Appl. Geophys., 32, 213–217.
[76] Saein, L.D., & Afzal, P. (2017). Correlation between Mo mineralization and faults using geostatistical and fractal modeling in porphyry deposits of Kerman Magmatic Belt, SE Iran. J. Geochemical Explor., 181, 333–343. doi:https://doi.org
/10.1016/j.gexplo.2017.06.014
[77] Kavoshgaran Company Report. (2010). Soilgeochemical Explorations in Kahang Area, scale: 1:5000. Tehran, Iran.
[78] Shepard, D. (1968). A two-dimensional interpolation for irregularly-spaced data function, in: Proceedings of the 1968 ACM National Conference. pp. 517–524. doi:https://doi.org/
10.1145/800186.810616
[79] Oskooi, B., & Abedi, M. (2015). An airborne magnetometry study across Zagros collision zone along Ahvaz–Isfahan route in Iran. Journal of Applied Geophysics, 123, 112-122.
[80] Abedi, M., & Oskooi, B. (2015). A combined magnetometry and gravity study across Zagros orogeny in Iran. Tectonophysics, 664 (28),164-175.
[81] Abedi, M., Dominique, F., Devriese, S.G.R., & Oldenburgb, D.W. (2018). Potential field signatures along the Zagros collision zone in Iran. Tectonophysics, 722 (2), 25-42.
[82] Cheng, Q. (1999). Multifractality and Spatial Statistics. Comput. Geosci., 25, 949–961. doi :https://doi.org/10.1016/S0098-3004(99)
00060-6
[83] Wang, G., Zhang, S., Yan, C., Xu, G., Ma, M., Li, K., & Feng, Y. (2012). Application of the multifractal singular value decomposition for delineating geophysical anomalies associated with molybdenum occurrences in the Luanchuan ore field (China). J. Appl. Geophys., 86, 109–119. doi:https://doi.org
/10.1016/j.jappgeo.2012.07.013
[84] Wang, W., Zhao, J., & Cheng, Q. (2013). Application of singularity index mapping technique to gravity/magnetic data analysis in southeastern Yunnan mineral district, China. J. Appl. Geophys., 92, 39–49. doi:https://doi.org/10.1016/j.jappgeo.2013.
02.012.