[1] Dong, Y., Lin, H., Wang, H., Mo, X., Fu, K., & Wen, H. (2011). Effects of ultraviolet irradiation on bacteria mutation and bioleaching of low-grade copper tailings. Minerals Engineering, 24(8), 870-875. https://doi.org/10.1016/j.mineng.2011.03.020
[2] Falagán, C., Grail, B.M., & Johnson, D.B. (2017). New approaches for extracting and recovering metals from mine tailings. Minerals Engineering, 106, 71-78. https://doi.org/10.1016/
j.mineng.2016.10.008
[3] Nguyen, V.K., & Lee, J.U. (2015). A comparison of microbial leaching and chemical leaching of arsenic and heavy metals from mine tailings. Biotechnology and Bioprocess Engineering, 20(1), 91-99. https://doi.org/10.1007/s12257-014-0223-1
[4] Brierley, C.L., & Brierley, J.A. (2013). Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 97(17), 7543-7552. https://doi.org/10.1007/s00253-013-5095-3
[5] Øvreås, L., & Torsvik, V. (1998). Microbial diversity and community structure in two different agricultural soil communities. Microbial Ecology, 36(3), 303-315. https://doi.org/
10.1007/s002489900117
[6] Huang, Z., Feng, S., Tong, Y., & Yang, H. (2019). Enhanced “contact mechanism” for the interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus. Journal of Environmental Management, 242, 11-21. https://doi.org/10.1016/j.jenvman.2019.04.030
[7] Jafari, M., Shafaei, S.Z., Abdollahi, H., Gharabaghi, M., & Chehreh Chelgani, S. (2018). Effect of Flotation Reagents on the Activity of
L. Ferrooxidans.
Mineral Processing and Extractive Metallurgy Review,
39(1), 34-43.
https://doi.org/10.1080/08827508.2017.1323748
[8] Zhou, W.B., Li, K., Wang, Y.G., Zhang, L.J., Cheng, H.N., & Zhou, H.B. (2019). Influence of particle size on copper recovery from sulfide ore by the moderately thermophilic microorganisms. Metallurgical Research and Technology, 116(1),119. https://
doi.org/10.1051/metal/2018118
[9] Prasidya, D.A., Wilopo, W., Warmada, I. W., & Retnaningrum, E. (2019). Optimization of manganese bioleaching activity and molecular characterization of indigenous heterotrophic bacteria isolated from the sulfuric area. Biodiversitas, 20(7), 1904-1909. https://doi.org/ 10.13057/biodiv/d200716
[10] Liu, R., Chen, J., Zhou, W., Cheng, H., & Zhou, H. (2019). Insight into the early-stage adsorption mechanism of moderately thermophilic consortia and intensified bioleaching of chalcopyrite. Biochemical Engineering Journal, 144, 40-47. https://doi.org/10.1016/j.bej.2019.01.009
[11] Rodríguez, Y., Ballester, A., Blázquez, M.L., González, F., & Muñoz, J.A. (2003). New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy, 71(1–2), 37-46. https://doi.org/10.1016/S0304-386X(03)00172-5
[12] Konishi, Y., Tokushige, M., Asai, S., & Suzuki, T. (2001). Copper recovery from chalcopyrite concentrate by acidophilic thermophile
Acidianus brierleyi in batch and continuous-flow stirred tank reactors.
Hydrometallurgy.
59(2–3), 271-282.
https://doi.org/10.1016/S0304-386X(00)00173-0
[13]
Huang, C.,
Qin,C.,
Feng, X.,
Liu, X.,
Yin, H.,
Jiang, L.,
Liang,Y.,
Liu, H., &
Tao, J. (2018). Chalcopyrite bioleaching of an in situ leaching system by introducing different functional oxidizers.
RSC Advances. 8, 37040-37049.
https://doi.org
/10.1039/C8RA07085G
[14] Piervandi, Z., Khodadadi Darban, A., Mousavi, S.M., Abdollahy, M., Asadollahfardi, G., Funari, V., & Dinelli, E. (2019). Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment. Ecotoxicology and Environmental Safety, 182,109443. https://doi.org/10.1016/
j.ecoenv.2019.109443
[15] Deng, S., Gu, G., Wu, Z., & Xu, X. (2017). Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms. Chemosphere, 185, 403-411. https://doi.org/10.1016/j.chemosphere.2017.07.037
[16] Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology, 3(2), 208-218. https://doi.org/10.1016/S0022-2836(61)80047-8
[17] Lorenz, T.C. (2012). Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments, 63, 1-15. https://doi.org/10.3791/3998
[18] Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., & Wheeler, D.L. (2008). GenBank. Nucleic Acids Research, 36(1), 25-30. https://doi.org/10.1093/nar/gkm929
[19] Felsenstein, J. (1985).Confidence Limits on Phylogenies: an Approach Using the Bootstrap. Evolution, 39(4), 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
[20] Wei, D., Liu, T., Zhang, Y., Cai, Z., He, J., & Xu, C. (2018). Vanadium bioleaching behavior by Acidithiobacillus ferrooxidans from a vanadium-bearing shale. Minerals, 8(1), 1-12. https://doi.org/10.3390/min8010024
[21] Bampole, D.L., & Mulaba-Bafubiandi, A.F. (2018). The removal performance of silica and solid colloidal particles from chalcopyrite bioleaching solution: Effect of coagulant (Magnafloc set #1597) for predicting an effective solvent extraction.
Engineering Journal,
22(5), 123-139.
https://doi.org/10.4186/ej.2018.22.5.123
[22] Graff, A., & Stubner, S. (2003). Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Systematic and Applied Microbiology, 26(3), 445-452. https://doi.org/10.1078/072320203322497482
[23] Funari, R., Ripa, R., Söderström, B., Skoglund, U., & Shen, A.Q. (2019). Detecting Gold Biomineralization by
Delftia acidovorans Biofilms on a Quartz Crystal Microbalance.
ACS Sensors,
4(11), 3023-3033.
https://doi.org/10.1021/acssensors.9b01580
[24] Das, S., Natarajan, G., & Ting, Y.P. (2017). Bio-extraction of precious metals from urban solid waste. AIP Conference Proceedings, 2017Jan. https://doi.org/10.1063/1.4974410
[25] Natarajan, V.P., Zhang, X., Morono, Y., Inagaki, F., & Wang, F. (2016). A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments. Frontiers in Microbiology, 7, 986. https://doi.org/10.3389/
fmicb.2016.00986
[26] Abdollahi, H., Shafaei. S.Z., Noaparast, M., & Manafi, Z. (2017). Mixed moderate thermophilic bioleaching of Cu, Mo and Re from molybdenite concentrate: effects of silver ion, medium and energy sources. International journal of mining and Geo-engineering, 51(2), 151-159. https://doi.org/10.22059/ijmge.2017.220805.594640
[27] Wang, Y., Chen, X., & Zhou, H. (2018). Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide.
Bioresource Technology,
268, 480-487.
https://doi.org/10.1016/j.biortech.2018.08.031
[28] Mousavi, S.M., Yaghmaei, S., Vossoughi, M., Jafari, A., & Hoseini, S.A. (2005). Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy, 80(1-2), 139-144. https://doi.org/10.1016/
j.hydromet.2005.08.001
[29] Zhang, L., Zhou, W., Li, K., Mao, F., Wan, L., Chen, X., Qiu, G. (2015). Synergetic effects of Ferroplasma thermophilum in enhancement of copper concentrate bioleaching by Acidithiobacillus caldus and Leptospirillum ferriphilum. Biochemical Engineering Journal, 93, 142-150. https://doi.org/10.1016/j.bej.2014.10.004
[30] Jørgensen, N.O.G., Brandt, K.K., Nybroe, O., & Hansen, M. (2009). Delftia lacustris sp. nov., a peptidoglycandegrading bacterium from fresh water, and emended description of
Delftia tsuruhatensis as a peptidoglycan-degrading bacterium.
International Journal of Systematic and Evolutionary Microbiology,
59(9), 2195-2199.
https://doi.org/10.1099/ijs.0.008375-0
[31] Yin, S.H., Wang, L.M., Wu, A.X., Chen, X., & Yan, R.F. (2019). Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities. International Journal of Minerals, Metallurgy and Materials, 26(11), 1337-1350. https://doi.org/10.1007/s12613-019-1826-5
[32] Shiers, D.W., Collinson, D.M., & Watling, H.R. (2016). Life in heaps: a review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction. Research in Microbiology, 167(7), 576-586. https://doi.org/10.1016/
j.resmic.2016.05.007
[33] Zhou, W., Zhang, L., Peng, J., Ge, Y., Tian, Z., Sun, J., Zhou, H. (2019). Cleaner utilization of electroplating sludge by bioleaching with a moderately thermophilic consortium: A pilot study. Chemosphere, 232, 345-355. https://doi.org/10.1016/
j.chemosphere.2019.05.185
[34] Falagán, C., & Johnson, D.B. (2018). The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria. Research in Microbiology, 169(10), 552-557. https://doi.org/10.1016/j.resmic.2018.07.004
[35] Pecina, E.T., Castillo, P., Martinez, D., & Orrantia, E. (2010). Biooxidation of an auriargentiferous arsenical pyrite concentrate by means of mesophilic and thermophilic bacteria. Minerals and Metallurgical Processing, 27(4), 212-218. https://doi.org/10.1007/bf03402445
[36] Do Nascimento, D.N.O., Lucheta, A.R., Palmieri, M.C., Do Carmo, A.L.V., Silva, P.M.P., Ferreira, R.V.P., Alves, J.O. (2019). Bioleaching for copper extraction of marginal ores from the Brazilian Amazon region. Metals, 9(1), 1-13. https://
doi.org/10.3390/met9010081
[37] Noei, S.B., Sheibani, S., Rashchi, F., & Mirazimi, S.M.J. (2017). Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex. International Journal of Minerals, Metallurgy and Materials, 24(6), 611-620. https://doi.org/10.1007/s12613-017-1443-0
[38] Mikoda, B., Potysz, A., & Kmiecik, E. (2019). Bacterial leaching of critical metal values from Polish copper metallurgical slags using
Acidithiobacillus thiooxidans.
Journal of Environmental Management,
236, 436-445.
https://doi.org/10.1016/j.jenvman
.2019.02.032
[39] Nascimento, D.N.O., Lucheta, A.R., Palmieri, M.C., Carmo, A.L.V., Silva, P.M.P., Pádua Ferreira, R.V., Junca, E., Grillo, F.F.,& Alves, J.O. (2019). Bioleaching for Copper Extraction of Marginal Ores from the Brazilian Amazon Region. Metals. 9, 81.
https://doi.org/10.3390/met9010081
[40] Panyushkina, A., Fomchenko, N., Babenko, V., & Muravyov, M. (2021). Effect of Temperature on Biobeneficiation of Bulk Copper-Nickel Concentrate with Thermoacidophilic Microbial Communities.
Metals. 11, 1969.
https://doi.org/10.3390/met
11121969
[41] Tipre, D.R., Vora, S.B., & Dave, S.R. (2004). Medium optimization for bioleaching of metals from Indian bulk polymetallic concentrate. Indian Journal of Biotechnology, 3(1), 86-91. http://nopr.niscair.res.in/handle/123456789/5832
[42] Seidel, A., Zimmels, Y., & Armon, R. (2001). Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chemical Engineering Journal, 83(2), 123-130. https://
doi.org/10.1016/S1385-8947(00)00256-4
[43] Wang, Y., Zeng, W., Qiu, G., Chen, X., & Zhou, H. (2014). A Moderately Thermophilic Mixed Microbial Culture for Bioleaching of Chalcopyrite Concentrate at High Pulp Density. Applied and Environmental Microbiology, 80(2), 741-750. https://doi.org/10.1128/AEM.02907-13
[44] Akcil, A., Ciftci, H., & Deveci, H. (2007). Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate. Minerals Engineering, 20(3), 310-318. https://doi.org/10.1016/j.mineng.2006.10.016
[45] Shaikh Shafikh, M., Ahmed, A.A., & Ahmed, S.A. (2018). Impact of pulp density on extraction of metals, by
Acidithiobacillus ferrooxidans and
Pseudomonas fluorescens from bauxite ore.
Journal of Pure and Applied Microbiology,
12(3), 1647-1654.
https://doi.org/10.22207/JPAM.12.3.72