Modeling of unconfined compressive strength and Young's modulus of lime and cement stabilized clayey subgrade soil using Evolutionary Polynomial Regression (EPR)

Document Type : Research Paper


1 Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran

2 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran


In this study, the evolutionary polynomial regression (EPR) method has been employed to develop simple models with reasonable accuracy to predict the compressive strength and Young's modulus of the lime/cement stabilized clayey subgrade soil. For this purpose, the different specimens with the various cement and lime contents, at three moisture contents (dry side, wet side, and optimum moisture content) were fabricated and were cured for 7, 14, 21, 28 and, 60 days to conduct the unconfined compressive strength (UCS) test. According to the test results, a dataset consisting of 75 records for each additive was prepared. Results of this study show that the R2 value of the developed model for predicting UCS of cement-stabilized clay soil is equal to 0.96 and 0.95 for training and testing sets, respectively. These two values for lime-stabilized soil are 0.91 and 0.87, respectively. Moreover, the R2 for predicting Young's modulus of cement-stabilized clay soil is equal to 0.90 and 0.89 for training and testing set, respectively. These two values for predicting Young's modulus of lime-stabilized soil are 0.88 and 0.94, respectively. The sensitivity analysis showed that for the Portland cement stabilized clayey subgrade, the percentage of the Portland cement and moisture content are the most significant parameters for predicting the UCS and Young's modulus, respectively. In contrast, for the lime-stabilized clayey subgrade soil, the most important parameters are the moisture content and the UCS, respectively.


[1] Yilmaz, Y., & Ozaydin, V. (2013). Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils. Engineering Geology, 155(1), 45-53, DOI: 10.1016/j.enggeo.2013.01.003
[2] Anagnostopoulos, C. A. (2015). Strength properties of an epoxy resin and cement-stabilized silty clay soil. Applied Clay Science, 114(1), 517-529, DOI: 10.1016/j.clay.2015.07.007
[3] Zhao, Z., Hamdan, N., Shen, L., Nan, H., Almajed, A., Kavazanjian, E., & He, X. (2016). Biomimetic hydrogel composites for soil stabilization and contaminant mitigation. Environmental Science & Technology, 50(22), 12401-12410, DOI: 10.1021/acs.est.6b01285.
[4] Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Procedia engineering, 143(1), 658-665, DOI: 10.1016/j.proeng.2016.06.093
[5] Furlan, A. P., Razakamanantsoa, A., Ranaivomanana, H., Levacher, D., & Katsumi, T. (2018). Shear strength performance of marine sediments stabilized using cement, lime and fly ash. Construction and Building Materials, 184(1), 454-463, DOI: 10.1016/j.conbuildmat.2018.06.231
[6] Ghorbani, A., & Hasanzadehshooiili, H. (2018). Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and foundations, 58(1), 34-49, DOI: 10.1016/j.sandf.2017.11.002
[7] Liu, L., Zhou, A., Deng, Y., Cui, Y., Yu, Z., & Yu, C. (2019). Strength performance of cement/slag-based stabilized soft clays. Construction and Building Materials, 211(1), 909-918, DOI: 10.1016/j.conbuildmat.2019.03.256
[8] Sharma, L., Sirdesai, N., Sharma, K., & Singh, T. (2018). Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science, 152(1), 183-195, DOI: 10.1016/j.clay.2017.11.012
[9] Söderlund, O., (2018) Stabilization of Soft Soil with Lime and PetritT. MSc Thesis, Luleå University of Technology.
[10] Yaghoubi, M., Shukla, S. K., & Mohyeddin, A. (2018). Effects of addition of waste tyre fibres and cement on the engineering behaviour of Perth sand. Geomechanics and Geoengineering, 13(1), 42-53, DOI: 10.1080/17486025.2017.1325941
[11] Das, BM. (1990). Principle of foundation engineering. USA, Boston.
[12] Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., & Darmawan, S. (2014). Laboratory evaluation of the use of cement-treated construction and demolition materials in pavement base and subbase applications. Journal of Materials in
 Civil Engineering, 27(6), 04014186, DOI: 10.1061/(ASCE)MT.1943-5533.0001148
[13] Zhang, T., Yue, X., Deng, Y., Zhang, D., & Liu, S. (2014). Mechanical behaviour and micro-structure of cement-stabilised marine clay with a metakaolin agent. Construction and Building Materials, 73(1), 51-57, DOI: 10.1016/j.conbuildmat.2014.09.041
[14] Rios, S., Cristelo, N., Viana da Fonseca, A., & Ferreira, C. (2015). Structural performance of alkali-activated soil ash versus soil cement. Journal of Materials in Civil Engineering, 28(2), 04015125, DOI: 10.1061/(ASCE)MT.1943-5533.0001398
[15] Bekhiti, M., Trouzine, H., & Rabehi, M. (2019). Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Construction and Building Materials, 208(1), 304-313, DOI: 10.1016/j.conbuildmat.2019.03.011
[16] Liu, Y., Wang, Q., Liu, S., ShangGuan, Y., Fu, H., Ma, B., Yuan, X. (2019). Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling. Cold Regions Science and Technology, 161(1), 32-42, DOI: 10.1016/j.coldregions.2019.03.003
[17] Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188(1), 361-371, DOI: 10.1016/j.conbuildmat.2018.07.207
[18] Oluwatuyi, O. E., Adeola, B. O., Alhassan, E. A., Nnochiri, E. S., Modupe, A. E., Elemile, O. O., Akerele, G. (2018). Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Studies in Construction Materials, 9(1), e00191, DOI: 10.1016/j.cscm.2018.e00191
[19] Nelson, J., & Miller, D. J. (1997). Expansive soils: problems and practice in foundation and pavement engineering. John Wiley & Sons.
[20] ACI Committee, (1990) State-of-the-art report on soil cement. Journal ACI, 87(4), 395-417.
[21] Bergado, D., Anderson, L., Miura, N., & Balasubramaniam, A. (1996). Soft ground improvement in lowland and other environments. Bangkok, Thailand.
[22] Mallela, J., Quintus, H. V., & Smith, K. (2004). Consideration of lime-stabilized layers in mechanistic-empirical pavement design. The National Lime Association, 200(1), 1-40.
[23] Croft, J. (1967). The influence of soil mineralogical composition on cement stabilization. Geotechnique, 17(2), 119-135, DOI: 10.1680/geot.1967.17.2.119
[24] Bell, F. (1996). Lime stabilization of clay minerals and soils. Engineering geology, 42(4), 223-237, DOI: 10.1016/0013-7952(96)00028-2
[25] Basma, A. A., & Tuncer, E. R. (1991). Effect of lime on volume change and compressibility of expansive clays. Transportation research record, 1295(1): 52-61
[26] Ola, S. (1978). Geotechnical properties and behaviour of some stabilized Nigerian lateritic soils. Quarterly Journal of Engineering Geology and Hydrogeology, 11(2), 145-160, DOI: 10.1144/GSL.QJEG.1978.011.02.04
[27] Gillott, J. E. (2012). Clay in engineering geology. Elsevier, DOI: 10.1007/0-387-30842-3-9
[28] Ghanizadeh, A. R., & Rahrovan, M. Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline. Frontiers of Structural and Civil Engineering, 13(4): 787-799, DOI: 10.1007/s11709-019-0516-8
[29] Manouchehrian, A., Sharifzadeh, M., & Moghadam, R. H. (2012). Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics. International Journal of Mining Science and Technology, 22(2), 229-236, DOI: 10.1016/j.ijmst.2011.08.013
[30] Mozumder, R. A., & Laskar, A. I. (2015). Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Computers and Geotechnics, 69(1), 291-300, DOI: 10.1016/j.compgeo.2015.05.021
[31] Torabi-Kaveh, M., Naseri, F., Saneie, S., & Sarshari, B. (2015). Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arabian journal of Geosciences, 8(5), 2889-2897, DOI:10.1007/s12517-014-1331-0
[32] Das, S. K., Samui, P., & Sabat, A. K. (2011). Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotechnical and Geological Engineering, 29(3), 329-342, DOI: 10.1007/s10706-010-9379-4
[33] Suman, S., Mahamaya, M., & Das, S. K. (2016). Prediction of Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilised Soil Using Artificial Intelligence Techniques. International Journal of Geosynthetics and Ground Engineering, 2(2), 1-11, DOI: 10.1007/s40891-016-0051-9
[34] Sathyapriya, S., & Arumairaj, P. (2017). Prediction of Unconfined Compressive Strength of a Stabilised Expansive Clay Soil using ANN and Regression Analysis (SPSS). Asian Journal of Research in Social Sciences and Humanities, 7(2), 109-123, DOI: 10.5958/2249-7315.2017.00075.2
[35] Mozumder, R. A., Laskar, A. I., & Hussain, M. (2017). Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Construction and Building Materials, 132(1), 412-424, DOI: 10.1016/j.conbuildmat.2016.12.012
[36] Alavi, A. H., Gandomi, A. H., & Mollahasani, A. (2012). A Genetic Programming-Based Approach for the Performance Characteristics Assessment of Stabilized Soil. In Variants of Evolutionary Algorithms for Real-World Applications, 343-376, DOI: 10.1007/978-3-642-23424-8_11
[37] Güllü, H. (2014). Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom ash. Engineering Applications of Artificial Intelligence, 35(1), 143-157, DOI: 10.1016/j.engappai.2014.06.020
[38] Motamedi, S., Shamshirband, S., Petković, D., & Hashim, R. (2015). Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sand-cement mixture. Powder technology, 278(1), 278-285, DOI: 10.1016/j.powtec.2015.02.045
[39] Motamedi, S., Shamshirband, S., Hashim, R., Petkovic, D., & Roy, C. (2015). Estimating unconfined compressive strength of cockle shell-cement-sand mixtures using soft computing methodologies. Engineering Structures, 98(1), 49-58, DOI: 10.1016/j.engstruct.2015.03.070
[40] Soleimani, S., Rajaei, S., Jiao, P., Sabz, A., & Soheilinia, S. (2018). New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement, 113(1), 99-107, DOI: 10.1016/j.measurement.2017.08.043
[41] Javadi, A. A., Ahangar-Asr, A., Johari, A., Faramarzi, A., & Toll, D. (2012). Modelling stress-strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Engineering Applications of Artificial Intelligence, 25(5), 926–933. DOI: 10.1016/j.engappai.2012.03.006
[42] Ahangar-Asr, Alireza, Faramarzi, A., & Javadi, A. A. (2010). A new approach for prediction of the stability of soil and rock slopes. Engineering Computations (Swansea, Wales), 27(7), 878–893. DOI:10.1108/02644401011073700
[43] Ahangar-Asr, A., Faramarzi, A., Mottaghifard, N., & Javadi, A. A. (2011). Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Computers and Geosciences, 37(11), 1860–1869. DOI: 10.1016/j.cageo.2011.04.015
[44] Ghanizadeh, A., Heidarabadizadeh, N., Ziaie, A. (2021). Modeling of Flow Number of Asphalt Mixtures Using Evolutionary polynomial Regression (EPR) Method. Journal of Transportation Research, 18(3), 15-28. DOI: 10.22034/tri.2021.108196.
[45] Ghanizadeh, A., Delaram, A. (2021). Development of Predictting Model for Clay Subgrade Soil Resilient Modulus based on the Results of Cone Penetration Test using Evolutionary Polynomial Regression Method. Civil Infrastructure Researches, 7(1), DOI: 10.22091/cer.2021.7122.1267
[46] Karimpour-Fard, M., Lashteh Neshaei, M., Karimnader-Shalkouhi, S. (2018). Evolutionary Polynomial Regression-Based Models to Estimate Stability of Gravity Hunched Back Quay Walls. AUT Journal of Civil Engineering, 2(1), 79-86. DOI: 10.22060/ajce.2018.13198.5250
[47] Shahin, M. A. (2015). Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomechanics and Geoengineering, 10(2), 109-125. DOI: 10.1080/17486025.2014.921333
[48] Ghorbani, A., & Hasanzadehshooiili, H. (2018). Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and Foundations, 58(1), 34-49. DOI: 10.1016/j.sandf.2017.11.002
[49] Shariatmadari, N., Hasanzadehshooiili, H., Ghadir, P., Saeidi, F., & Moharami, F. (2021). Compressive Strength of Sandy Soils Stabilized with Alkali-Activated Volcanic Ash and Slag. Journal of Materials in Civil Engineering, 33(11), 04021295. DOI: 10.1061/(asce)mt.1943-5533.0003845.
[50] Giustolisi, O., & Savic, D. A. (2006). A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8(3), 207-222, DOI: 10.2166/hydro.2006.020b
[51] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning, 3(2), 95-99.
[52] Balf, M. R., Noori, R., Berndtsson, R., Ghaemi, A., & Ghiasi, B. (2018). Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers. Journal of Water Supply: Research and Technology-Aqua, 67(5), 447-457, DOI: 10.2166/aqua.2018.021
[53] Ahangar‐Asr, A., Faramarzi, A., Javadi, A. A., & Giustolisi, O. (2011). Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression. Engineering Computations, 28(4): 492-507, DOI: 10.1108/02644401111131902
[54] Khandelwal, M., & Singh, T. (2011). Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. Arabian Journal of Geosciences, 4(3-4), 435-442, DOI: 10.1007/s12517-009-0093-6
[55] Goodarzi, A., & Moradloo, A. (2017). Effect of curing temperature and SiO2-nanoparticles on the engineering properties of lime treated expansive soil. Modares civil engineering journal, 17(3), 132-144.
[56] Harichane, K., Ghrici, M., & Kenai, S. (2011). Effect of curing time on shear strength of cohesive soils stabilized with combination of lime and natural pozzolana. International Journal of Civil Engineering, 9(2): 90-96.
[57] Ghanizadeh, A. R., Yarmahmoudi, A., & Abbaslou, H. (2020). Mechanical properties of low plasticity clay soil stabilized with iron ore mine tailing and Portland cement. Journal of Mining and Environment, 11(3), 837-853.
[58] Laucelli, D., Berardi, L., Doglioni, A., & Giustolisi, O. (2012). EPR-MOGA-XL: an excel based paradigm to enhance transfer of research achievements on data-driven modeling. Paper presented at the Proceedings of 10th international conference on hydroinformatics HIC, 14-18
[59] Ghorbani, A., & Salimzadehshooiili, M. (2019). Stabilization of sandy soil using cement and RHA reinforced by Polypropylene fiber. Modares Civil Engineering Journal, 18(5), 165-176.
[60] Kogbara, R. B., & Al-Tabbaa, A. (2011). Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil. Science of the Total Environment, 409(11), 2325-2335, DOI: 10.1016/j.scitotenv.2011.02.037
[61] Al-Dabbas, M. A., Schanz, T., & Yassen, M. J. (2012). Proposed engineering of gypsiferous soil classification. Arabian Journal of Geosciences, 5(1), 111-119, DOI: 10.1007/s12517-010-0183-5
[62] Dhar, S., & Hussain, M. (2021). The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering, 15(4), 471-483. DOI:10.1080/19386362.2019.1598623.
[63] Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Azdeniz Dolmacı, Ö. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6). DOI:10.1007/s12517-018-3458-x.
[64] Remesan, R., Shamim, M., & Han, D. (2008). Model data selection using gamma test for daily solar radiation estimation. Hydrological processes, 22(21), 4301-4309, DOI: 10.1002/hyp.7044