[1] Yilmaz, Y., & Ozaydin, V. (2013). Compaction and shear strength characteristics of colemanite ore waste modified active belite cement stabilized high plasticity soils. Engineering Geology, 155(1), 45-53, DOI:
10.1016/j.enggeo.2013.01.003
[2] Anagnostopoulos, C. A. (2015). Strength properties of an epoxy resin and cement-stabilized silty clay soil. Applied Clay Science, 114(1), 517-529, DOI:
10.1016/j.clay.2015.07.007
[3] Zhao, Z., Hamdan, N., Shen, L., Nan, H., Almajed, A., Kavazanjian, E., & He, X. (2016). Biomimetic hydrogel composites for soil stabilization and contaminant mitigation. Environmental Science & Technology, 50(22), 12401-12410, DOI:
10.1021/acs.est.6b01285.
[4] Dang, L. C., Fatahi, B., & Khabbaz, H. (2016). Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Procedia engineering, 143(1), 658-665, DOI:
10.1016/j.proeng.2016.06.093
[5] Furlan, A. P., Razakamanantsoa, A., Ranaivomanana, H., Levacher, D., & Katsumi, T. (2018). Shear strength performance of marine sediments stabilized using cement, lime and fly ash. Construction and Building Materials, 184(1), 454-463, DOI:
10.1016/j.conbuildmat.2018.06.231
[6] Ghorbani, A., & Hasanzadehshooiili, H. (2018). Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and foundations, 58(1), 34-49, DOI:
10.1016/j.sandf.2017.11.002
[7] Liu, L., Zhou, A., Deng, Y., Cui, Y., Yu, Z., & Yu, C. (2019). Strength performance of cement/slag-based stabilized soft clays. Construction and Building Materials, 211(1), 909-918, DOI:
10.1016/j.conbuildmat.2019.03.256
[8] Sharma, L., Sirdesai, N., Sharma, K., & Singh, T. (2018). Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study. Applied Clay Science, 152(1), 183-195, DOI:
10.1016/j.clay.2017.11.012
[9] Söderlund, O., (2018) Stabilization of Soft Soil with Lime and PetritT. MSc Thesis, Luleå University of Technology.
[10] Yaghoubi, M., Shukla, S. K., & Mohyeddin, A. (2018). Effects of addition of waste tyre fibres and cement on the engineering behaviour of Perth sand. Geomechanics and Geoengineering, 13(1), 42-53, DOI:
10.1080/17486025.2017.1325941
[11] Das, BM. (1990). Principle of foundation engineering. USA, Boston.
[12] Mohammadinia, A., Arulrajah, A., Sanjayan, J., Disfani, M. M., Bo, M. W., & Darmawan, S. (2014). Laboratory evaluation of the use of cement-treated construction and demolition materials in pavement base and subbase applications. Journal of Materials in
Civil Engineering, 27(6), 04014186, DOI:
10.1061/(ASCE)MT.1943-5533.0001148
[13] Zhang, T., Yue, X., Deng, Y., Zhang, D., & Liu, S. (2014). Mechanical behaviour and micro-structure of cement-stabilised marine clay with a metakaolin agent. Construction and Building Materials, 73(1), 51-57, DOI:
10.1016/j.conbuildmat.2014.09.041
[14] Rios, S., Cristelo, N., Viana da Fonseca, A., & Ferreira, C. (2015). Structural performance of alkali-activated soil ash versus soil cement. Journal of Materials in Civil Engineering, 28(2), 04015125, DOI:
10.1061/(ASCE)MT.1943-5533.0001398
[15] Bekhiti, M., Trouzine, H., & Rabehi, M. (2019). Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil. Construction and Building Materials, 208(1), 304-313, DOI:
10.1016/j.conbuildmat.2019.03.011
[16] Liu, Y., Wang, Q., Liu, S., ShangGuan, Y., Fu, H., Ma, B., Yuan, X. (2019). Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling. Cold Regions Science and Technology, 161(1), 32-42, DOI:
10.1016/j.coldregions.2019.03.003
[17] Ghadir, P., & Ranjbar, N. (2018). Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188(1), 361-371, DOI:
10.1016/j.conbuildmat.2018.07.207
[18] Oluwatuyi, O. E., Adeola, B. O., Alhassan, E. A., Nnochiri, E. S., Modupe, A. E., Elemile, O. O., Akerele, G. (2018). Ameliorating effect of milled eggshell on cement stabilized lateritic soil for highway construction. Case Studies in Construction Materials, 9(1), e00191, DOI:
10.1016/j.cscm.2018.e00191
[19] Nelson, J., & Miller, D. J. (1997). Expansive soils: problems and practice in foundation and pavement engineering. John Wiley & Sons.
[20] ACI Committee, (1990) State-of-the-art report on soil cement. Journal ACI, 87(4), 395-417.
[21] Bergado, D., Anderson, L., Miura, N., & Balasubramaniam, A. (1996). Soft ground improvement in lowland and other environments. Bangkok, Thailand.
[22] Mallela, J., Quintus, H. V., & Smith, K. (2004). Consideration of lime-stabilized layers in mechanistic-empirical pavement design. The National Lime Association, 200(1), 1-40.
[23] Croft, J. (1967). The influence of soil mineralogical composition on cement stabilization. Geotechnique, 17(2), 119-135, DOI:
10.1680/geot.1967.17.2.119
[25] Basma, A. A., & Tuncer, E. R. (1991). Effect of lime on volume change and compressibility of expansive clays. Transportation research record, 1295(1): 52-61
[26] Ola, S. (1978). Geotechnical properties and behaviour of some stabilized Nigerian lateritic soils. Quarterly Journal of Engineering Geology and Hydrogeology, 11(2), 145-160, DOI:
10.1144/GSL.QJEG.1978.011.02.04
[27] Gillott, J. E. (2012). Clay in engineering geology. Elsevier, DOI: 10.1007/0-387-30842-3-9
[28] Ghanizadeh, A. R., & Rahrovan, M. Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline. Frontiers of Structural and Civil Engineering, 13(4): 787-799, DOI:
10.1007/s11709-019-0516-8
[29] Manouchehrian, A., Sharifzadeh, M., & Moghadam, R. H. (2012). Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics. International Journal of Mining Science and Technology, 22(2), 229-236, DOI:
10.1016/j.ijmst.2011.08.013
[30] Mozumder, R. A., & Laskar, A. I. (2015). Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Computers and Geotechnics, 69(1), 291-300, DOI:
10.1016/j.compgeo.2015.05.021
[31] Torabi-Kaveh, M., Naseri, F., Saneie, S., & Sarshari, B. (2015). Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arabian journal of Geosciences, 8(5), 2889-2897, DOI:
10.1007/s12517-014-1331-0
[32] Das, S. K., Samui, P., & Sabat, A. K. (2011). Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotechnical and Geological Engineering, 29(3), 329-342, DOI:
10.1007/s10706-010-9379-4
[33] Suman, S., Mahamaya, M., & Das, S. K. (2016). Prediction of Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilised Soil Using Artificial Intelligence Techniques. International Journal of Geosynthetics and Ground Engineering, 2(2), 1-11, DOI: 10.1007/s40891-016-0051-9
[34] Sathyapriya, S., & Arumairaj, P. (2017). Prediction of Unconfined Compressive Strength of a Stabilised Expansive Clay Soil using ANN and Regression Analysis (SPSS). Asian Journal of Research in Social Sciences and Humanities, 7(2), 109-123, DOI:
10.5958/2249-7315.2017.00075.2
[35] Mozumder, R. A., Laskar, A. I., & Hussain, M. (2017). Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Construction and Building Materials, 132(1), 412-424, DOI:
10.1016/j.conbuildmat.2016.12.012
[36] Alavi, A. H., Gandomi, A. H., & Mollahasani, A. (2012). A Genetic Programming-Based Approach for the Performance Characteristics Assessment of Stabilized Soil. In Variants of Evolutionary Algorithms for Real-World Applications, 343-376, DOI: 10.1007/978-3-642-23424-8_11
[37] Güllü, H. (2014). Function finding via genetic expression programming for strength and elastic properties of clay treated with bottom ash. Engineering Applications of Artificial Intelligence, 35(1), 143-157, DOI:
10.1016/j.engappai.2014.06.020
[38] Motamedi, S., Shamshirband, S., Petković, D., & Hashim, R. (2015). Application of adaptive neuro-fuzzy technique to predict the unconfined compressive strength of PFA-sand-cement mixture. Powder technology, 278(1), 278-285, DOI:
10.1016/j.powtec.2015.02.045
[39] Motamedi, S., Shamshirband, S., Hashim, R., Petkovic, D., & Roy, C. (2015). Estimating unconfined compressive strength of cockle shell-cement-sand mixtures using soft computing methodologies. Engineering Structures, 98(1), 49-58, DOI: 10.1016/j.engstruct.2015.03.070
[40] Soleimani, S., Rajaei, S., Jiao, P., Sabz, A., & Soheilinia, S. (2018). New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement, 113(1), 99-107, DOI:
10.1016/j.measurement.2017.08.043
[41] Javadi, A. A., Ahangar-Asr, A., Johari, A., Faramarzi, A., & Toll, D. (2012). Modelling stress-strain and volume change behaviour of unsaturated soils using an evolutionary based data mining technique, an incremental approach. Engineering Applications of Artificial Intelligence, 25(5), 926–933.
DOI: 10.1016/j.engappai.2012.03.006
[42] Ahangar-Asr, Alireza, Faramarzi, A., & Javadi, A. A. (2010). A new approach for prediction of the stability of soil and rock slopes. Engineering Computations (Swansea, Wales), 27(7), 878–893. DOI:10.1108/02644401011073700
[43] Ahangar-Asr, A., Faramarzi, A., Mottaghifard, N., & Javadi, A. A. (2011). Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Computers and Geosciences, 37(11), 1860–1869. DOI: 10.1016/j.cageo.2011.04.015
[44] Ghanizadeh, A., Heidarabadizadeh, N., Ziaie, A. (2021). Modeling of Flow Number of Asphalt Mixtures Using Evolutionary polynomial Regression (EPR) Method. Journal of Transportation Research, 18(3), 15-28. DOI: 10.22034/tri.2021.108196.
[45] Ghanizadeh, A., Delaram, A. (2021). Development of Predictting Model for Clay Subgrade Soil Resilient Modulus based on the Results of Cone Penetration Test using Evolutionary Polynomial Regression Method. Civil Infrastructure Researches, 7(1), DOI: 10.22091/cer.2021.7122.1267
[46] Karimpour-Fard, M., Lashteh Neshaei, M., Karimnader-Shalkouhi, S. (2018). Evolutionary Polynomial Regression-Based Models to Estimate Stability of Gravity Hunched Back Quay Walls. AUT Journal of Civil Engineering, 2(1), 79-86. DOI: 10.22060/ajce.2018.13198.5250
[47] Shahin, M. A. (2015). Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomechanics and Geoengineering, 10(2), 109-125. DOI: 10.1080/17486025.2014.921333
[48] Ghorbani, A., & Hasanzadehshooiili, H. (2018). Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and Foundations, 58(1), 34-49. DOI: 10.1016/j.sandf.2017.11.002
[49] Shariatmadari, N., Hasanzadehshooiili, H., Ghadir, P., Saeidi, F., & Moharami, F. (2021). Compressive Strength of Sandy Soils Stabilized with Alkali-Activated Volcanic Ash and Slag. Journal of Materials in Civil Engineering, 33(11), 04021295. DOI: 10.1061/(asce)mt.1943-5533.0003845.
[50] Giustolisi, O., & Savic, D. A. (2006). A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 8(3), 207-222, DOI:
10.2166/hydro.2006.020b
[51] Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine learning, 3(2), 95-99.
[52] Balf, M. R., Noori, R., Berndtsson, R., Ghaemi, A., & Ghiasi, B. (2018). Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers. Journal of Water Supply: Research and Technology-Aqua, 67(5), 447-457, DOI:
10.2166/aqua.2018.021
[53] Ahangar‐Asr, A., Faramarzi, A., Javadi, A. A., & Giustolisi, O. (2011). Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression. Engineering Computations, 28(4): 492-507, DOI:
10.1108/02644401111131902
[54] Khandelwal, M., & Singh, T. (2011). Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. Arabian Journal of Geosciences, 4(3-4), 435-442, DOI:
10.1007/s12517-009-0093-6
[55] Goodarzi, A., & Moradloo, A. (2017). Effect of curing temperature and SiO2-nanoparticles on the engineering properties of lime treated expansive soil. Modares civil engineering journal, 17(3), 132-144.
[56] Harichane, K., Ghrici, M., & Kenai, S. (2011). Effect of curing time on shear strength of cohesive soils stabilized with combination of lime and natural pozzolana. International Journal of Civil Engineering, 9(2): 90-96.
[57] Ghanizadeh, A. R., Yarmahmoudi, A., & Abbaslou, H. (2020). Mechanical properties of low plasticity clay soil stabilized with iron ore mine tailing and Portland cement. Journal of Mining and Environment, 11(3), 837-853.
[58] Laucelli, D., Berardi, L., Doglioni, A., & Giustolisi, O. (2012). EPR-MOGA-XL: an excel based paradigm to enhance transfer of research achievements on data-driven modeling. Paper presented at the Proceedings of 10th international conference on hydroinformatics HIC, 14-18
[59] Ghorbani, A., & Salimzadehshooiili, M. (2019). Stabilization of sandy soil using cement and RHA reinforced by Polypropylene fiber. Modares Civil Engineering Journal, 18(5), 165-176.
[60] Kogbara, R. B., & Al-Tabbaa, A. (2011). Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil. Science of the Total Environment, 409(11), 2325-2335, DOI:
10.1016/j.scitotenv.2011.02.037
[61] Al-Dabbas, M. A., Schanz, T., & Yassen, M. J. (2012). Proposed engineering of gypsiferous soil classification. Arabian Journal of Geosciences, 5(1), 111-119, DOI: 10.1007/s12517-010-0183-5
[62] Dhar, S., & Hussain, M. (2021). The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering, 15(4), 471-483. DOI:10.1080/19386362.2019.1598623.
[63] Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Azdeniz Dolmacı, Ö. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6). DOI:10.1007/s12517-018-3458-x.
[64] Remesan, R., Shamim, M., & Han, D. (2008). Model data selection using gamma test for daily solar radiation estimation. Hydrological processes, 22(21), 4301-4309, DOI:
10.1002/hyp.7044