[1] Aziznejad S, Esmaieli K, Hadjigeorgiou J, Labrie, D (2018) Response of jointed rock masses subjected to impact loading. J Rock Mech and Geotech Eng 10(4), 624-634, https://doi.org/
10.1016/j.jrmge.2017.12.006.
[2] Majzoobi G.H, Rahmani K, Lahmi S (2019) Determination of length to diameter ratio of the bars in torsional Split Hopkinson bar. Measurement 143, 144 154, https://doi.org/10.1016/
j.measurement.2019.04.054.
[3] Gerlach R, Kettenbeil C, Petrinic N (2012)A new split Hopkinson tensile bar design. Int J Impact Eng 50, 63-67,
https://doi.org/10.1016/j.ijimpeng.2012.08.004.
[4] Li, X, Yang Z, Zhou Z (2014) Numerical Simulation of the Rock SHPB Test with a Special Shape Striker Based on the Discrete Element Method. Rock Mech Rock Eng 47:1693–1709, https://doi.org/10.1007/s00603-013-0484-6.
[5] Lok T.S, Li X.B, Liu D.S, Zhao P.J (2002) Testing and response of large diameter brittle materials subjected to high strain rate. J Material Civil Eng 14(3):262–269, https://doi.org/10.1061/
(ASCE)0899-1561(2002)14:3(262).
[6] Li X.B, Lok T.S, Zhao J, Zhao P.J (2000) Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int J Rock Mech Min Sci 37(7):1055–1060, https://doi.org/10.1016/S1365-1609(00)00037-X.
[8] Zhou Z.l, Li X, Liu A, Zou Y (2017) Dynamic behavior of rock during its post failure stage in SHPB tests. Transactions of Nonferrous Metals Society of China 27(1), 184-196, https://doi.org/10.1016/S1003-6326(17)60021-9.
[9] Peng K, Gao K, Liu J, Liu Y, Zhang Zh, Fan X, Yin X, Zhng Y, Huang G (2017) Experimental and Numerical Evaluation of Rock Dynamic Test with Split-Hopkinson Pressure Bar. Advances in Materials Science and Engineering, Article ID 2048591, https://doi.org/10.1155/2017/2048591.
[10] Zhang Q.B, ZhaoJ (2014) A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech Rock Eng 47:1411–1478, https://doi.org/ 10.1007/s00603-013-0463-y.
[11] Xu Y, Dai F, Xu N.W, Zhao T (2016) Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing. Rock Mech Rock Eng 49:731–745, https://doi.org/
10.1007/s00603-015-0787-x.
[12] Chen X, Ge L, Zhou J, Wu S (2015) Experimental Study on Split Hopkinson Pressure Bar Pulse-Shaping Techniques for Concrete. J Material and Civil En 28(5): 04015196, 1-9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001494.
[13] Baranowski P, Malachowski J, Gieleta R, Damaziak K, Mazurhiewicz L, Kolodziejcyk D (2013) Numerical study for determination of pulse shaping design variables in SHPB apparatus. Technical science 61)2(, 459-466, https://doi.org/
10.2478/bpasts-2013-0045.
[14] Panowicz R, Janiszewski J, Kochanowski K (2019) Effects of Sample Geometry Imperfections on the Results of Split Hopkinson Pressure Bar Experiments. Experimental Techniques 43:397–403, https://doi.org/10.1007/s40799-018-0293-7.
[15] Liao Z.Y, Zhu J.B, Xia K.W, Tang C.A (2017) Determination of Dynamic Compressive and Tensile Behavior of Rocks from Numerical Tests of Split Hopkinson Pressure and Tension Bar. Rock Mech Rock Eng 49(10), 3917-3934, https://doi.org/10.1007/
s00603-016-0954-8.
[16] Zhou ZL, Li X.B, Liu A.H, Zou Y (2011) Stress uniformity of split Hopkinson pressure bar under half-sine wave loads. Int J Rock Mech Min Sci 48(4):697–701, https://doi.org/10.1016/
j.ijrmms.2010.09.006.
[17] Itasca Consulting Group Inc (2016) PFC2d user’s manual, version 5.0. Minneapolis
[18] Nikkhah M (2017) Numerical assessment of influence of confining stress on Kaiser effect using distinct element method. Journal of mining and environment 8(2): 215-226
https://doi.org/10.22044/jme.2016.674