[1] Abraham, A., H. Guo, and H. Liu, Swarm Intelligence: Foundations, Perspectives, and Applications, in Swarm Intelligent Systems, N. Nedjah and L.d.M. Mourelle, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 3-25.
[2] Alimoradi, A., Maleki, B., Karimi, A., Sahafzadeh, M., Abbasi, S. Integrating Geophysical Attributes with New Cuckoo Search Machine-Learning Algorithm to Estimate Silver Grade Values–Case Study: Zarshouran Gold Mine, Journal of Mining and Environment, 2020, Vol. 11, No. 3, 865-879.
[3] Atashpaz-Gargari, E. and C. Lucas, Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition. Vol. 7. 2007. 4661-4667.
[4] Badel, M., S. Angorani, and M. Shariat Panahi, The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers & Geosciences, 2011. 37(4): p. 530-540.
[5] Bárdossy, G. and J. Fodor, Evaluation of Uncertainties and Risks in Geology. 2004, Springer Berlin Heidelberg.
[6] Chatterjee, S., Ore grade estimation of a limestone deposit in India using an Artificial Neural Network. 2006.
[7] Daliran, F., Agdarreh & Zarshuran SRHDG deposits, Takab region, NW-Iran. in Proceedings: GSA - Annual Meeting, Fall 2002.
[8] Daliran, F., Discovery of 1.2 kg/t gold and 1.9 kg/t silver in mud precipitates of a cold spring from the Takab geothermal field, NW Iran, in Mineral Exploration and sustainable development, Vol.1. Ed.: D.G. Eliopoulos. 2003, Millpress, Rotterdam. p. 461-464.
[9] Dutta, S., Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data. Vol. 2. 2010. 86-96.
[10] Eberhart, R. and J. Kennedy, A new optimizer using particle swarm theory, in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (2015). IEEE.
[11] Goldberg, D.E. and J.H. Holland, Genetic Algorithms and Machine Learning. Machine Learning, 1988. 3(2): p. 95-99.
[12] Gopalakrishnan, K., Particle Swarm Optimization in Civil Infrastructure Systems: State-of-the-Art Review, in Metaheuristic Applications in Structures and Infrastructures, A.H. Gandomi, et al., Editors. 2013, Elsevier: Oxford. p. 49-76.
[13] Haykin, S.S., Neural networks: a comprehensive foundation. 1999, Upper Saddle River, N.J.: Prentice-Hall.
[14] Jalloh, A.B., Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation: A case study. International Journal of Mining Science and Technology, 2016. 26(4): p. 581-585.
[15] Journel, A.G. and C.J. Huijbregts, Mining geostatistics. 1978, New York: The Blackburn Press.
[16] Kapageridis, I., Application of artificial neural network systems to ore grade estimation from exploration data. 1999, University of Nottingham. p. 14-35.
[17] Kapageridis, I.K. and B.H. Denby. Ore Grade Estimation with Modular Neural Network Systems – A Case Study. 1999.
[18] Karaboga, D., An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Kayseri, Turkey. 2005.
[19] Karaboga, D., B. Akay, and C. Ozturk, Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks, in Modeling Decisions for Artificial Intelligence. 2007, Springer Berlin Heidelberg. p. 318-329.
[20] Koike, K., Neural Network-Based Estimation of Principal Metal Contents in the Hokuroku District, Northern Japan, for Exploring Kuroko-Type Deposits. Vol. 11. 2002, Natural Resources Research. 135-156.
[21] Li, X.-l., Adaptive ore grade estimation method for the mineral deposit evaluation. Mathematical and Computer Modelling, 2010. 52(11-12): p. 1947-1956.
[22] Maleki, S., H. Ramazi, and S. Moradi, Estimation of Iron Concentration by Using a Support Vector Machine and an Artificial Neural Network - the Case Study of the Choghart Deposit southeast of Yazd, Yazd, Iran. Geopersia, 2014. 4(2): p. 75-86.
[23] Edwards, R. Atkinson, K., Ore Deposit Geology and its Influence on Mineral Exploration, 1986, Springer
[24] Paar, W., Daliranite, PbHgAs2S6, a new sulphosalt from the Zarshouran Au-As deposit, Takab region, Iran. Mineralogical Magazine, 2009. Vol. 73(5): p. 871–881.
[25] Paravarzar, S., Correlation between geological units and mineralized zones using fractal modeling in Zarshuran gold deposit (NW Iran). Arabian Journal of Geosciences, 2014. 8: p. 3845-3854.
[26] Pyrcz, M. J., Gringarten, E., Frykman, P., Deutsch, C. V., Representative Input Parameters for Geostatistical Simulation, 2006, University of Alberta
[27] Strebelle, S., Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology, 2002. 34(1): p. 1-21.
[28] Tahmasebi, P. and A. Hezarkhani, Application of a Modular Feedforward Neural Network for Grade Estimation. Natural Resources Research. Vol. 20. 2011. 25-32.
[29] Talbi, E.-G., Metaheuristics: From Design to Implementation. 2009: Wiley Publishing. 593.
[30] Samanta, B., Sparse Data Division Using Data Segmentation and Kohonen Network for Neural Network and Geostatistical Ore Grade Modeling in Nome Offshore Placer Deposit. Natural Resources Research, 2004. 13(3): p. 189-200.
[31] Samanta, B., R. Ganguli, and S. Bandopadhyay, Comparing the predictive performance of neural networks with ordinary kriging in a bauxite deposit. Mining Technology, 2005. 114(3): p. 129-139.
[32] Samanta, B., S. Bandopadhyay, and R. Ganguli, Comparative Evaluation of Neural Network Learning Algorithms for Ore Grade Estimation. Mathematical Geology, 2006. 38(2): p. 175-197.
[33] Samanta, B. and S. Bandopadhyay, Construction of a radial basis function network using an evolutionary algorithm for grade estimation in a placer gold deposit. Computers & Geosciences, 2009. 35(8): p. 1592-1602.
[34] Yang, X.-S., Optimization and Metaheuristic Algorithms in Engineering, in Metaheuristics in Water, Geotechnical and Transport Engineering, X.-S. Yang, et al., Editors. 2013, Elsevier: Oxford. p. 1-23.