Document Type : Research Paper
Authors
1 Department of mining engineering, University of Gonabab, Iran
2 Department of Electrical & Computer Engineering, University of Gonabad, Gonabad, Iran
Abstract
Keywords
Main Subjects
[1] Zuo, R.(2017). Machine Learning of Mineralization-Related Geochemical Anomalies: A Review of Potential Methods, Natural Resources Research
[2] Chen, Y., Lu, L., & Li, X. (2014). Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly. Journal of Geochemical Exploration, 140, 56–63.
[3] O’Brien, J. J., Spry, P. G., Nettleton, D., Xu, R., &Teale, G. S. (2015). Using random forests to distinguish gahnite compositions as an exploration guide to Broken Hill-type Pb– Zn–Ag deposits in the Broken Hill domain, Australia. Journal of Geochemical Exploration, 49, 74–86.
[4] Gonbadi, A. B., Tabatabaei, S. H., & Carranza, E. J. M. (2015). Supervised geochemical anomaly detection by pattern recognition. Journal of Geochemical Exploration, 157, 81–91.
[5] Kirkwood, C., Cave, M., Beamish, D., Grebby, S., & Ferreira, A. (2016). A machine learning approach to geochemical mapping. Journal of Geochemical Exploration, 167, 49–61.
[6] Zhao, J., Chen, S., &Zuo, R. (2016). Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China. Journal of Geochemical Exploration, 164, 54–64.
[7] Xiong, Y., Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network. Computers & Geosciences, 86, 75–82.
[8] Chen, Y., & Wu, W. (2017). Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochemistry: Exploration, Environment, Analysis, 17, 231–238.
[9] Zuo, R. and Xiong, Y. (2017). Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods. Natural Resources Research, pp.1-9.
[10] Vapnik, V. (1995). The Nature of Statistical Learning Theory: Springer, New York, 314 p.
[11] Vapnik, V. (1998). Statistical Learning Theory: Wiley, New York, 736 p.
[12] Twarakavi, N. K. C., Misra, D., &Bandopadhyay, S. (2006). Prediction of arsenic in bedrock-derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research, 15, 15–26.
[13] Zarmehr Company, (2004). exploration report of Tnurcheh Au – Cu mineralization area.
[14] Salimi, A., Ziaii, M., HosseinjaniZadeh, M., Amiri, A. and Karimpouli, S. (2015). High performance of the support vector machine in classifying hyperspectral data using a limited dataset. Int. Journal of Mining & Geo-Engineering, 49(2), pp.253-268.
[15] Lu, J., & Zhang, E. (2007). Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recognition Letters, 28(16), 2401-2411.
[16] Thodoridis, S and Koutroumbas, K (2009) ‘’Pattern recognition’’, Fourth Edition, Elsevier. [17] Wu, Y., Yang, X., Plaza, A., Qiao, F., Gao, L., Zhang, B., and Cui,
[18] Chang, C. (2007). Hyperspectral Data Exploitation, Theory, and Applications. Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
[19] Camps-Valls, G. and Bruzzone, L.(2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6), pp.1351-1362.
[20] Mahdiyanfar, H. (2020). Prediction of economic potential of deep blind mineralization by Fourier transform of a geochemical dataset. Periodico di Mineralogia, 90(1).
[21] Mahdiyanfar, H. (2020). Identification of deep blind mineralization and dispersed zones using geochemical frequency anomaly in comparison with Zonality method. Journal of Analytical and Numerical Methods in Mining Engineering, 10(23), 1-16.
[22] Fawcett, T. (2003). Notes and Practical Considerations for Data Mining Researchers, Intelligent enterprise Technologies Laboratory, HP Labs Palo Alto. HPL-2003-4
[23] Swets, J.A. (2014). Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers. Psychology Press