Powder factor prediction in blasting operation using rock geo-mechanical properties and geometric parameters

Document Type : Research Paper

Author

Department of Mining Engineering, Federal University of Technology, Akure, Nigeria

Abstract

Prediction of powder factor is a major activity while preparing drilling and blasting operation, as the total production cost depends on it. It is a major input parameter in blast design as it influences the efficiency of subsequent operations in mining. Generally, effective parameters that influence powder factor can be divided into three, namely, rock mass, geometric and explosive parameters. In this study, the rock mass properties and geometric parameters were studied based on the ratio of the mass of explosive and blast design. The main objective of this study is the application of rock engineering system (RES) to calculate the powder factor index (Pfi) based on predominant rock mass properties and geometric parameters. This approach was applied to a database of twenty-four blast sites comprising of rock mass rating, blastability index, porosity, specific gravity, uniaxial compressive strength, the burden, the ratio of space to the burden, the ratio of drilled-hole depth to burden, drilled-hole diameter and the ratio of the burden to drill-hole diameter. The relationship between these parameters and how each of them influence powder factor was studied and used to predict powder factor index. The result shows that rock mass rating, blastability index, porosity, specific gravity, uniaxial compressive strength and drilled-hole diameter affect powder factor. It also shows that Pfi is a robust technique for generating an improved line of fit and predicting more dependable and accurate valuation of powder factor with the coefficient of determination (R2) of 0.86, and root mean square error (RMSE) of 0.023 when compared with the traditional multivariable regression method.

Keywords


[1] Anon, (2014). Reducing the Cost of Drill and Blast through Blast Design Optimisation: Case Study at North parkes Open Cut Mine, Australia, Orica Limited Group, Australia, pp.1-2.
[2] Gokhal, V. B. (2010), Rotary Drilling and Blasting in Large Surface Mines, CRC Press, p.748
[3] Bozic, B. (1998). Control of Fragmentation by Blasting. Rudarsko- geoloiko-nafini zbornik; 10, pp. 49-57.
[4] Morin, M. A. & Ficarazzo F. (2006). Monte Carlo Simulation as a Tool to Predict Blasting Fragmentation based on the Kuz–Ram Model. Computers and Geosciences; 32(3) pp. 352-359. https://doi.org/0.1016/j.cageo.2005.06.022
[5]      Kozan, E. & Liu, S. Q. (2017). An operational-level multi-stage mine production timetabling model for optimally synchronizing drilling, blasting, and excavation operations. Int. J. Min. Reclam. Environ.; 31(7), pp.457-474. https://doi.org/10.1080/17480930.2016.1160818
[6]      Kahriman,   A.,   Özkan,   Ş.,   Sül,   Ö.   and   Demirci,   A. (2001). Estimation of the powder factor in bench blasting from the Bond work index. Mining Technology, 110(2), pp.114–118. https://10.1179/mnt.2001.110.2.114
[7]      Alipour,  A.,  Mokhtarian,  M.  &  Chehreghani,  S.  (2018).      An Application of Fuzzy Sets to the Blastability Index (BI) Used in Rock Engineering [online]. Periodica Polytechnica Civil Engineering; Available at: https://doi.org/10.3311/PPci.11276 (Assessed 10 August 2020).
[8] Agyei, G. & Owusu-Tweneboah, M. (2019). A  Comparative Analysis of Rock Fragmentation using Blast Prediction Results. Ghana Mining Journal; 19(1), pp. 49 - 58.
[9]     Kahryman, A., Sul, O. L. & Demycy, A. (1998). Estimating Powder Factor from Comminution Concept. Mineral Resources Engineering; 7(2), pp.69-77. https://doi.org/10.1142/S0950609898000109
[10] Bowa, V. M. (2015). Optimization of Blasting Design Parameters on Open Pit Bench: A Case Study of Nchanga Open Pits. International Journal of Scientific and Technology Research; 4(9), pp.45-51.
[11] Mohamed, F., Hafsaoui, A., Talhi, K. and Menacer,  K. (2015). Study of the Powder Factor in Surface Bench Blasting. World Multidisciplinary Earth Sciences Symposium, Procedia Earth and Planetary Science; 15 pp.892 – 899. https://doi.org/10.1016/j.proeps.2015.08.142
[12] Jimeno, C. L., Jimeno, E. L. and Carcedo, F. J. A. (1995). Drilling and blasting of rocks. Rotterdam: A.A. Balkema
[13] Sellers, E., Furtney, J., Onederra, I. & Chitombo, G. (2012). Improved understanding of explosive-rock interactions using the hybrid stress blasting model. Journal of the Southern African Institute of Mining and Metallurgy; 112(8), pp.721-728.
[14] Sharma, D. P. (2012). Rock Breakage and Blast Design Considerations in Open-pit, Mining and blasting weblog for Mining, Explosives and Blasting [online]. Mining and Blasting. Available at: https://miningandblasting.wordpress.com/2012/10/12/rock- breakage-and-blast-design-considerations-in-open pit/.
[15]  Thuro, K. & Spaun, G. (1996). Introducing the destruction work as a new rock property of toughness referring to drillability in conventional drill and blast tunneling. Rock Mech. Rock Eng.; 2, pp.707–720.
[16] Altindag, R. (2004). Evaluation of drill cuttings in prediction of penetration rate by using coarseness index and mean particle size in percussive drilling. Geotech. Geol. Eng.; 22, pp.417–425. https://doi.org/10.1023/B:GEGE.0000025043.92979.48
[17] Köhler, M., Maidl, U. & Martak, L. (2011). Abrasiveness and tool wear in shield tunneling in soil. Geomech. Tunn.; 4, pp.36–54. https://dx.doi.org/10.1002/geot.201100002
[18] Yarali, O. & Soyer, E. (2013). Assessment of relationships between drilling rate index and mechanical properties of rocks. Tunneling and Underground Spacing Technology; 33, pp.46–53. https://doi.org/10.1016/j.tust.2012.08.010
[19] Inanloo Arabi Shad, H., Sereshki, F., Ataei, M. & Karamoozian, M. (2018). Prediction of rotary drilling penetration rate in iron ore oxides using rock engineering system. International Journal of Mining Science and Technology; 28, pp.407–413. https://doi.org/10.1016/j.ijmst.2018.04.004
[20] Mulenga, S. & Kaunda, R. B. (2020). Blast Design for Improved Productivity using a Modified Available Energy Method [online]. Journal of Mining and Environment. Available at: https://doi.org/10.22044/jme.2020.9506.1861 (Assessed 15 August 2020).
[21]   Jafari,  A.,  Hossaini,  M.  F.,  &  Alipour,  A.  (2009).   Prediction of  Specific  Charge in  Tunnel  Blasting   Using   ANNs [online]. Int. Soci. Rock Mech. and Rock Eng. Available at: https://www.onepetro.org/conference-paper/ISRM- SINOROCK-2009-150
[22] Ahangaran, D. K., Nikzad, M., Zomorodian A., Wetherelt, A., Foster, P. J. Yasrebi, A. B. & Afzal, P. (2012). Powder factor prediction in Urmia cement mine utilizing neural network. 12th International Multidisciplinary Scientific geoconference SGEM; pp.729-236. https://doi.org/10.5593/sgem2012/s03.v1043
[23] Hayati, M. & Abroshan, M. R. (2017). Providing a Model to Determine of Powder Factor using Principal Component Analysis Technique. Indian Journal of Science and Technology; 10(24), pp. 1 – 7. https://10.17485/ijst/2017/v10i24/112346
[24] Hudson, J. A. (2013). Review of Rock Engineering Systems applications over the last 20 years. In Rock Characterisation, Modelling and Engineering Design Methods. Taylor & Francis Group: London, UK; pp. 419–424. https://dx.doi.org/10.1201/b14917-75
[25] Mazzoccola, D. F. & Hudson, J. A. (1996). A Comprehensive Method of Rock Mass Characterization for Indicating Natural Slope Stability. Quarterly Journal of Engineering Geology; 29, pp.37 – 56. http://qjegh.lyellcollection.org/
[26] Castaldini, D., Genevois, R., Panizza, M., Puccinelli, A., Berti, M. & Simoni, A. (1998). An integrated approach for analyzing earthquake-induced surface effects: a case study from the Northern Apennines, Italy. Journal of Geodynamics; pp.413–441. https://doi.org/10.1016/S0264-3707(97)00047-1
[27] Latham, J. P. & Lu, P. (1999). Development of an assessment system for the blastability of rock masses. Int. J. Rock Mech. Min. Sci.; 36, pp.41–55. https://doi.org/10.1016/S0148-9062(98)00175-2 [28]   Zhang, L., Yang, Z., Liao, Q. & Chen, J. (2004). An application of the rock engineering systems (RES) methodology in rockfall hazard assessment on the Chengdu-Lhasa Highway, China. Int. J. Rock. Mech. Min. Sci.; 41, pp.833–838. https://doi.org/10.1016/j.ijrmms.2004.03.144
[29] Ceryan, N. & Ceryan, S. (2008). An application of the interaction matrices method for slope, failure susceptibility zoning: Dogankent settlement area (Giresun, NE Turkey). Bulletin of Engineering Geology and the Environment; 67(3), pp.375–388. https://doi.org/10.1007/S10064-008-0144-3
[30] Frough, O. & Torabi, S. R. (2013). An application of rock engineering systems for estimating TBM downtimes. Eng. Geol.; 157, pp.112–123. https://dx.doi.org/10.1016/j.enggeo.2013.02.003
[31] Saffari, A., Sereshki, F., Ataei, M. & Ghanbari, K. (2013). Applying Rock Engineering Systems (RES) approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines. Int. J. Min.& Geo-Eng.; 47(2), pp.115-127. https://doi.org/10.22059/ijmge.2013.51333
[32] Bahri Najafi, A., Saeedi, G. R. & Ebrahimi, F. M. A. (2014). Risk analysis and prediction of out-of-seam dilution in longwall mining. Int J Rock Mech Min Sci., 70, pp.115–122. https://doi.org/10.1016/j.ijrmms.2014.04.015
[33] Faramarzi, F, Mansouri, H. & Ebrahimi Farsangi, M. A. (2014). Development of rock engineering systems-based models for fly rock risk analysis and prediction of flyrock distance in surface blasting. Rock Mech. Rock Eng.; 47, pp.1291–1306. https://doi.org/10.1007/s00603-013-0460-1
[34]   Rafiee, R., Khalookakaie, R., Ataei, M., Jalali, S. M. E. Sereshki,  F. & Azarfar, A. (2016). Improvement of rock engineering system coding using fuzzy numbers. Journal of Intelligent & Fuzzy Systems; 30, pp. 705–715. https://doi.org/10.3233/IFS-151791
[35] Tavoularis, N., Koumantakis, I., Rozos, D. & Koukis, G. (2017). Landslide susceptibility mapping using the Rock Engineering System approach and GIS technique: an example from southwest Arcadia (Greece). Topical Sustainable Future: European Geologists; 44, pp.19-27.
[36] Faramarzi, F., Ebrahimi Farsangi, M. A. & Mansouri, H. (2013). A RES based model for risk assessment and prediction of back break in bench blasting. Rock Mech Rock Eng.; 46, pp.877–887. https://dx.doi.org/10.1016/j.ijrmms.2012.12.045
[37] Mohammadi. M. and Azad, A. (2019). Applying Rock Engineering Systems Approach for Prediction of Overbreak Produced in Tunnels Driven in Hard Rock [online]. Geotech. Geol. Eng.; Available at: https://doi.org/10.1007/s10706-019-01161-z (Assessed 19 August 2020).
[38] Elmouttie, M. & Dean, P. (2020). Systems Engineering Approach to Slope Stability Monitoring in the Digital Mine. Resources; 9(42), pp.1-15. https://doi.10.3390/resources9040042 [39]   Hasanipanah,  M.,   Armaghani,   D.  J.,   Monjezi,   M.   & Shams, (2016). Risk Assessment and Prediction of Rock Fragmentation Produced by Blasting Operation: A Rock Engineering System. Environmental Earth Sciences; 75 pp.1–12. https://doi.10.1007/s12665-016-5503-y
[40] Yang, Y. and Zhang, Q. (1998). The application of neural networks to rock engineering systems (RES). Int. J. Rock Mech. Min. Sci.; 35, pp.727–745. https://doi.org/10.1016/S0148-9062(97)00339-2
[41] Zare Naghadehi, M., Jimenez, R., KhaloKakaie, R. & Jalali, S. M. E. (2013). A new open-pit mine slope instability index defined using the improved rock engineering systems approach. Inter. Journal of Rock Mech. and Min. Sci.; 61, pp.1–14. http://dx.doi.org/10.1016/j.ijrmms.2013.01.012
[42] Zare Naghadehi, M., Jimenez, R., KhaloKakaie, R. & Jalali, S. M. E. (2011). A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes.   Eng. Geol.; 118, pp.82–92. https://10.1016/j.enneo.2011.01.003
[43] Benardos, A. G. & Kaliampakos, D. C. (2004): A Methodology for Assessing Geotechnical Hazards for TBM Tunneling—Illustrated by the Athens Metro, Greece. International Journal of Rock Mechanics and Mining Sciences; 4, pp.987–999. https://doi.10.1016/j.ijrmms.2004.03.007
[44] Jiao, Y. & Hudson, J. A. (1998). Identifying the critical mechanism for rock engineering design. Géotechnique; 48, pp.319–335.
[45] Elueze, A. A. (2000). Compositional appraisal and petrotectonic significance of the Imelu banded ferruginous rock in the Ilesha schist belt, southwestern Nigeria. J. Min. Geol.; 36(1), pp.8-18.
[46] Dada, S. S. & Briqueu, L. (1998). Pb-Pb and Sr-Nd isotopic study of meta-igneous rocks of Kaduna: Implications for Archean mantle of Northern Nigeria. In: Abstracts of the 32nd annual conference, Nigeria Mining, and Geosciences Society; p.57
[47] Rahamam, M. A.., Ajayi, T. R., Oshin, I. O. & Asubiojo, F. O. (1988). Trace element geochemistry and geotechtonic setting of Ile-Ife schist belts. Precambrian geology of Nigeria. GSN, Kaduna; pp. 241-256.
[48] Ogunsanwo, F. O., Olowofela, J. A., Okeyode, I. C., Idowu, O. A., and Olurin, O. T. (2019). Aeroradiospectrometry in the spatial formation characterization of Ogun State, south-western, Nigeria [online]. Scientific African; 6. Available at: https://doi.org/10.1016/j.sciaf.2019.e00204 (Assessed: 1 September 2020).
[49] Afolagboye, L. O., Talabi, A. O. & Akinola, O. O.  (2016). Evaluation of selected basement complex rocks from  Ado- Ekiti,  SW  Nigeria,  as source of rock construction aggregates. Bull. Eng. Geol. Environ., 75, pp.853-865. https://doi.org/10.1007/s10064-015-0766-1
[50] Langefors, U. & Kihlström, B. (1978). The Modern Technique of Rock Blasting. 1978: John Wiley & Sons.
[51] Konya, C. J. & Walter, E. J. (1990). Surface blast design Prentice- Hall.