[1] Anon, (2014). Reducing the Cost of Drill and Blast through Blast Design Optimisation: Case Study at North parkes Open Cut Mine, Australia, Orica Limited Group, Australia, pp.1-2.
[2] Gokhal, V. B. (2010), Rotary Drilling and Blasting in Large Surface Mines, CRC Press, p.748
[3] Bozic, B. (1998). Control of Fragmentation by Blasting. Rudarsko- geoloiko-nafini zbornik; 10, pp. 49-57.
[4] Morin, M. A. & Ficarazzo F. (2006). Monte Carlo Simulation as a Tool to Predict Blasting Fragmentation based on the Kuz–Ram Model. Computers and Geosciences; 32(3) pp. 352-359. https://doi.org/0.1016/j.cageo.2005.06.022
[5] Kozan, E. & Liu, S. Q. (2017). An operational-level multi-stage mine production timetabling model for optimally synchronizing drilling, blasting, and excavation operations. Int. J. Min. Reclam. Environ.; 31(7), pp.457-474. https://doi.org/10.1080/17480930.2016.1160818
[6] Kahriman, A., Özkan, Ş., Sül, Ö. and Demirci, A. (2001). Estimation of the powder factor in bench blasting from the Bond work index. Mining Technology, 110(2), pp.114–118. https://10.1179/mnt.2001.110.2.114
[7] Alipour, A., Mokhtarian, M. & Chehreghani, S. (2018). An Application of Fuzzy Sets to the Blastability Index (BI) Used in Rock Engineering [online]. Periodica Polytechnica Civil Engineering; Available at: https://doi.org/10.3311/PPci.11276 (Assessed 10 August 2020).
[8] Agyei, G. & Owusu-Tweneboah, M. (2019). A Comparative Analysis of Rock Fragmentation using Blast Prediction Results. Ghana Mining Journal; 19(1), pp. 49 - 58.
[9] Kahryman, A., Sul, O. L. & Demycy, A. (1998). Estimating Powder Factor from Comminution Concept. Mineral Resources Engineering; 7(2), pp.69-77. https://doi.org/10.1142/S0950609898000109
[10] Bowa, V. M. (2015). Optimization of Blasting Design Parameters on Open Pit Bench: A Case Study of Nchanga Open Pits. International Journal of Scientific and Technology Research; 4(9), pp.45-51.
[11] Mohamed, F., Hafsaoui, A., Talhi, K. and Menacer, K. (2015). Study of the Powder Factor in Surface Bench Blasting. World Multidisciplinary Earth Sciences Symposium, Procedia Earth and Planetary Science; 15 pp.892 – 899. https://doi.org/10.1016/j.proeps.2015.08.142
[12] Jimeno, C. L., Jimeno, E. L. and Carcedo, F. J. A. (1995). Drilling and blasting of rocks. Rotterdam: A.A. Balkema
[13] Sellers, E., Furtney, J., Onederra, I. & Chitombo, G. (2012). Improved understanding of explosive-rock interactions using the hybrid stress blasting model. Journal of the Southern African Institute of Mining and Metallurgy; 112(8), pp.721-728.
[14] Sharma, D. P. (2012). Rock Breakage and Blast Design Considerations in Open-pit, Mining and blasting weblog for Mining, Explosives and Blasting [online]. Mining and Blasting. Available at: https://miningandblasting.wordpress.com/2012/10/12/rock- breakage-and-blast-design-considerations-in-open pit/.
[15] Thuro, K. & Spaun, G. (1996). Introducing the destruction work as a new rock property of toughness referring to drillability in conventional drill and blast tunneling. Rock Mech. Rock Eng.; 2, pp.707–720.
[16] Altindag, R. (2004). Evaluation of drill cuttings in prediction of penetration rate by using coarseness index and mean particle size in percussive drilling. Geotech. Geol. Eng.; 22, pp.417–425. https://doi.org/10.1023/B:GEGE.0000025043.92979.48
[17] Köhler, M., Maidl, U. & Martak, L. (2011). Abrasiveness and tool wear in shield tunneling in soil. Geomech. Tunn.; 4, pp.36–54. https://dx.doi.org/10.1002/geot.201100002
[18] Yarali, O. & Soyer, E. (2013). Assessment of relationships between drilling rate index and mechanical properties of rocks. Tunneling and Underground Spacing Technology; 33, pp.46–53. https://doi.org/10.1016/j.tust.2012.08.010
[19] Inanloo Arabi Shad, H., Sereshki, F., Ataei, M. & Karamoozian, M. (2018). Prediction of rotary drilling penetration rate in iron ore oxides using rock engineering system. International Journal of Mining Science and Technology; 28, pp.407–413. https://doi.org/10.1016/j.ijmst.2018.04.004
[20] Mulenga, S. & Kaunda, R. B. (2020). Blast Design for Improved Productivity using a Modified Available Energy Method [online]. Journal of Mining and Environment. Available at: https://doi.org/10.22044/jme.2020.9506.1861 (Assessed 15 August 2020).
[21] Jafari, A., Hossaini, M. F., & Alipour, A. (2009). Prediction of Specific Charge in Tunnel Blasting Using ANNs [online]. Int. Soci. Rock Mech. and Rock Eng. Available at: https://www.onepetro.org/conference-paper/ISRM- SINOROCK-2009-150
[22] Ahangaran, D. K., Nikzad, M., Zomorodian A., Wetherelt, A., Foster, P. J. Yasrebi, A. B. & Afzal, P. (2012). Powder factor prediction in Urmia cement mine utilizing neural network. 12th International Multidisciplinary Scientific geoconference SGEM; pp.729-236. https://doi.org/10.5593/sgem2012/s03.v1043
[23] Hayati, M. & Abroshan, M. R. (2017). Providing a Model to Determine of Powder Factor using Principal Component Analysis Technique. Indian Journal of Science and Technology; 10(24), pp. 1 – 7. https://10.17485/ijst/2017/v10i24/112346
[24] Hudson, J. A. (2013). Review of Rock Engineering Systems applications over the last 20 years. In Rock Characterisation, Modelling and Engineering Design Methods. Taylor & Francis Group: London, UK; pp. 419–424. https://dx.doi.org/10.1201/b14917-75
[25] Mazzoccola, D. F. & Hudson, J. A. (1996). A Comprehensive Method of Rock Mass Characterization for Indicating Natural Slope Stability. Quarterly Journal of Engineering Geology; 29, pp.37 – 56. http://qjegh.lyellcollection.org/
[26] Castaldini, D., Genevois, R., Panizza, M., Puccinelli, A., Berti, M. & Simoni, A. (1998). An integrated approach for analyzing earthquake-induced surface effects: a case study from the Northern Apennines, Italy. Journal of Geodynamics; pp.413–441. https://doi.org/10.1016/S0264-3707(97)00047-1
[27] Latham, J. P. & Lu, P. (1999). Development of an assessment system for the blastability of rock masses. Int. J. Rock Mech. Min. Sci.; 36, pp.41–55. https://doi.org/10.1016/S0148-9062(98)00175-2 [28] Zhang, L., Yang, Z., Liao, Q. & Chen, J. (2004). An application of the rock engineering systems (RES) methodology in rockfall hazard assessment on the Chengdu-Lhasa Highway, China. Int. J. Rock. Mech. Min. Sci.; 41, pp.833–838. https://doi.org/10.1016/j.ijrmms.2004.03.144
[29] Ceryan, N. & Ceryan, S. (2008). An application of the interaction matrices method for slope, failure susceptibility zoning: Dogankent settlement area (Giresun, NE Turkey). Bulletin of Engineering Geology and the Environment; 67(3), pp.375–388. https://doi.org/10.1007/S10064-008-0144-3
[30] Frough, O. & Torabi, S. R. (2013). An application of rock engineering systems for estimating TBM downtimes. Eng. Geol.; 157, pp.112–123. https://dx.doi.org/10.1016/j.enggeo.2013.02.003
[31] Saffari, A., Sereshki, F., Ataei, M. & Ghanbari, K. (2013). Applying Rock Engineering Systems (RES) approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines. Int. J. Min.& Geo-Eng.; 47(2), pp.115-127. https://doi.org/10.22059/ijmge.2013.51333
[32] Bahri Najafi, A., Saeedi, G. R. & Ebrahimi, F. M. A. (2014). Risk analysis and prediction of out-of-seam dilution in longwall mining. Int J Rock Mech Min Sci., 70, pp.115–122. https://doi.org/10.1016/j.ijrmms.2014.04.015
[33] Faramarzi, F, Mansouri, H. & Ebrahimi Farsangi, M. A. (2014). Development of rock engineering systems-based models for fly rock risk analysis and prediction of flyrock distance in surface blasting. Rock Mech. Rock Eng.; 47, pp.1291–1306. https://doi.org/10.1007/s00603-013-0460-1
[34] Rafiee, R., Khalookakaie, R., Ataei, M., Jalali, S. M. E. Sereshki, F. & Azarfar, A. (2016). Improvement of rock engineering system coding using fuzzy numbers. Journal of Intelligent & Fuzzy Systems; 30, pp. 705–715. https://doi.org/10.3233/IFS-151791
[35] Tavoularis, N., Koumantakis, I., Rozos, D. & Koukis, G. (2017). Landslide susceptibility mapping using the Rock Engineering System approach and GIS technique: an example from southwest Arcadia (Greece). Topical Sustainable Future: European Geologists; 44, pp.19-27.
[36] Faramarzi, F., Ebrahimi Farsangi, M. A. & Mansouri, H. (2013). A RES based model for risk assessment and prediction of back break in bench blasting. Rock Mech Rock Eng.; 46, pp.877–887. https://dx.doi.org/10.1016/j.ijrmms.2012.12.045
[37] Mohammadi. M. and Azad, A. (2019). Applying Rock Engineering Systems Approach for Prediction of Overbreak Produced in Tunnels Driven in Hard Rock [online]. Geotech. Geol. Eng.; Available at: https://doi.org/10.1007/s10706-019-01161-z (Assessed 19 August 2020).
[38] Elmouttie, M. & Dean, P. (2020). Systems Engineering Approach to Slope Stability Monitoring in the Digital Mine. Resources; 9(42), pp.1-15. https://doi.10.3390/resources9040042 [39] Hasanipanah, M., Armaghani, D. J., Monjezi, M. & Shams, (2016). Risk Assessment and Prediction of Rock Fragmentation Produced by Blasting Operation: A Rock Engineering System. Environmental Earth Sciences; 75 pp.1–12. https://doi.10.1007/s12665-016-5503-y
[40] Yang, Y. and Zhang, Q. (1998). The application of neural networks to rock engineering systems (RES). Int. J. Rock Mech. Min. Sci.; 35, pp.727–745. https://doi.org/10.1016/S0148-9062(97)00339-2
[41] Zare Naghadehi, M., Jimenez, R., KhaloKakaie, R. & Jalali, S. M. E. (2013). A new open-pit mine slope instability index defined using the improved rock engineering systems approach. Inter. Journal of Rock Mech. and Min. Sci.; 61, pp.1–14. http://dx.doi.org/10.1016/j.ijrmms.2013.01.012
[42] Zare Naghadehi, M., Jimenez, R., KhaloKakaie, R. & Jalali, S. M. E. (2011). A probabilistic systems methodology to analyze the importance of factors affecting the stability of rock slopes. Eng. Geol.; 118, pp.82–92. https://10.1016/j.enneo.2011.01.003
[43] Benardos, A. G. & Kaliampakos, D. C. (2004): A Methodology for Assessing Geotechnical Hazards for TBM Tunneling—Illustrated by the Athens Metro, Greece. International Journal of Rock Mechanics and Mining Sciences; 4, pp.987–999. https://doi.10.1016/j.ijrmms.2004.03.007
[44] Jiao, Y. & Hudson, J. A. (1998). Identifying the critical mechanism for rock engineering design. Géotechnique; 48, pp.319–335.
[45] Elueze, A. A. (2000). Compositional appraisal and petrotectonic significance of the Imelu banded ferruginous rock in the Ilesha schist belt, southwestern Nigeria. J. Min. Geol.; 36(1), pp.8-18.
[46] Dada, S. S. & Briqueu, L. (1998). Pb-Pb and Sr-Nd isotopic study of meta-igneous rocks of Kaduna: Implications for Archean mantle of Northern Nigeria. In: Abstracts of the 32nd annual conference, Nigeria Mining, and Geosciences Society; p.57
[47] Rahamam, M. A.., Ajayi, T. R., Oshin, I. O. & Asubiojo, F. O. (1988). Trace element geochemistry and geotechtonic setting of Ile-Ife schist belts. Precambrian geology of Nigeria. GSN, Kaduna; pp. 241-256.
[48] Ogunsanwo, F. O., Olowofela, J. A., Okeyode, I. C., Idowu, O. A., and Olurin, O. T. (2019). Aeroradiospectrometry in the spatial formation characterization of Ogun State, south-western, Nigeria [online]. Scientific African; 6. Available at: https://doi.org/10.1016/j.sciaf.2019.e00204 (Assessed: 1 September 2020).
[49] Afolagboye, L. O., Talabi, A. O. & Akinola, O. O. (2016). Evaluation of selected basement complex rocks from Ado- Ekiti, SW Nigeria, as source of rock construction aggregates. Bull. Eng. Geol. Environ., 75, pp.853-865. https://doi.org/10.1007/s10064-015-0766-1
[50] Langefors, U. & Kihlström, B. (1978). The Modern Technique of Rock Blasting. 1978: John Wiley & Sons.
[51] Konya, C. J. & Walter, E. J. (1990). Surface blast design Prentice- Hall.