[3] Du, K., Su, R., Tao, M., Yang, C., Momeni, A., & Wang, S. (2019). Specimen shape and cross-section effects on mechanical properties of rocks under uniaxial compressive stress.
Bull Eng Geol Env 78, 6061-6074.
https://doi.org/10.1007/s10064-019-01518-x.
[6] Basu, A., Celestino, T. B., & Bortolucci, A. A. (2009). Evaluation of rock mechanical behaviors under uniaxial compression with reference to assessed weathering grades.
Rock Mech Rock Eng 42, 73-93.
https://doi.org/10.1007/s00603-008-0170-2.
[8] Majeed, Y., Abu Bakar, M. Z., & Butt, I. A. (2020). Abrasivity evaluation for wear prediction of button drill bits using geotechnical rock properties.
Bull Eng Geol Env 79, 767-787.
https://doi.org/10.1007/s10064-019-01587-y.
[9] Katz, O., Reches, Z., & Roegiers, J. C. (2000). Evaluation of mechanical rock properties using a Schmidt hammer. Int. J. Rock Mech. and Min. Sci. 37, 723-728.
[10] Sonmez, H., Tuncay, E., & Gokceoglu, C. (2004). Models to predict the uniaxial compressive strengths and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. and Min. Sci. 41, 717-729. DOI: 10.1016/j.ijrmms.2004.01.011.
[11] Ng, I. T., Yuen, K. V., & Lau, C. H. (2015). Predictive model for uniaxial compressive strength for grade III granitic rocks. Eng. Geol. 199, 28-37. DOI:10.1016/j.enggeo.2015.10.008.
[12] Pappalardo, G. (2015). Correlations between P-wave velocity and physical-mechanical properties of intensely jointed dolostones, Peloritani Mounts, NE Sicily. Rock Mech. Rock Eng. 48, 1711-1721. DOI 10.1007/s00603-014-0607-8.
[13] Zhao, J., & Li, H. B. (2000). Experimental determination of dynamic tensile properties of a granite. Int. J. Rock Mech. and Min. Sci. 37, 861-866. DOI: 10.1016/S1365-1609(00)00015-0.
[14] Ceryan, S., Zorlu, K., Gokceoglu, C., & Temel, A. (2008). The use of cation packing index for characterising the weathering degree of granitic rocks.
Eng. Geol. 98, 60-74.
https://doi.org/10.1016/j.enggeo.2008.01.007.
[15] Effinov, V. P. (2009). The rock strength in different tension conditions. J. Min. Sci., 45, 569-575.
[16] Aono, Y., Okuno, T., Nakaya, A., & Nishi, T. (2016). Evaluation of constitutive model by the triaxial compression test and numerical analysis introduced strain hardening and softening. Proc. of 9th Asian Rock Mech. Symposium, 2016 Indonesia.
[17] Graue, B., Seigesmund, S., & Middendorf B. (2011). Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements.
Env. Earth Sci. 63, 1799-1822.
https://doi.org/10.1007/s12665-011-1077-x.
[18] Sarkar, K., Vishal, V., & Singh, T. N. (2012). An empirical correlation of index geomechanical parameters with the compressional wave velocity.
Geot. Geol. Eng. 30, 469-479.
https://doi.org/10.1007/s10706-011-9481-2.
[19] Xue, L., Qi, M., Qin, S., Li, G., Li, P., & Wang, M. A. (2015). Potential strain indicator for brittle failure prediction of low porosity rock: par II – theoretical studies based on renormalization group theory. Rock Mech. Rock Eng. 48, 1773-1785.
[20] Okewale, I. A., & Olaleye, B. M. (2013). Characterization of some selected limestone deposit in Ogun State Nigeria for prediction of penetration rate of drilling. IOSR J. Eng. 3, 25-30.
[21] Yu, R., Tian, Y., & Wang, X. (2015). Relation between stresses obtained from Kaiser effect under uniaxial compression and hydraulic fracturing. Rock Mech. Rock Eng. 48, 397.
[22] Undul, O., Aysal, N., Cobanolglu, B. C., Amann, F., & Perras, M. (2016). Strength, deformation and cracking characteristics of limestone. In Rock Mech. Rock Eng., from past to future, 181-185.
[23] Kassab, M. A., & Weller, A. (2015). Study on P-wave and S-wave velocity in dry and wet sandstone of Tushka region, Egypt. Egypt. J. Pet. 24, 1-11.
[24] Wang, H., Pan, J., Wang, S., & Zhu, H. (2015). Relationship between micro-fracture density, P-wave velocity and permeability of coal. J. Appl. Geop. 117, 111-117.
[26] Tugrul, A., & Zarif, I. H. (1999). Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey.
Eng Geol 51, 303-317.
https://doi.org/10.1016/S0013-7952(98)00071-4.
[27] ISRM. (1979). Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake durability index properties. Int J Rock Mech Min Sci Geomech 16, 141-156.
[28] ISRM. (1978). Suggested methods for determining the hardness and abrasiveness of rocks; Part 3 – suggested method for the determination of Schmidt rebound hardness. Int. J Rock Mech Min Sci Geomech 15, 89-97.
[29] ISRM. (2007). The complete ISRM suggested methods for rock characterisation, testing and monitoring: 1974-2006. In Ulusay, Hudson (Eds).
[30] ISRM. 2015. The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. Ulusay, R (Ed.), Cham, Switzerland: Springer. DOI 10.1007/978-3-319-007713-0
[31] ISRM. (1978). Suggested methods for petrographic descriptions of rock. Int J Rock Mech Min Sci Geomech 15, 43-45.
[32] Krumbein, W. C., & Sloss, L. L. (1963). Stratigraphy and sedimentation. “2nd Ed., San Francisco: Freeman and Company.
[33] Payan, M., Khoshghalb, A., Senetakis, K., & Nasser, K. (2016). Effect of particle shape and validity of Gmax models for sand: A critical review and a new expression.
Computer andGeotechnics 72, 28-41.
http://dx.doi.org/10.1016/j.compgeo.2015.11.003.
[35] Zorlu, K., Ulusay, R., Ocakoglu, F., Gokceoglu, C., & Sonmez, H. (2004). Predicting intact rock properties of selected sandstones using petrographic thin-section data. Int J Rock Mech Min Sci 41, 93-98.
[36] ISRM. (1981). Suggested methods for rock characterisation, testing and monitoring. Pergamon Press, Oxford.
[37] ISRM. (1979). Suggested methods for determining compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech 16, 137-140.
[38] Kongacul, E. C., & Santi, P. M. (1999). Predicting the unconfined compressive strength of the Breathitt shale using slake durability, shore hardness and rock structural properties. Int J Rock Mech Min Sci 36, 139-153.
[39] Kahraman, S., Gunaydin, O., & Fener, M. (2005). The effect of porosity on the relation between uniaxial compressive strength and point load index.
Int J Rock Mech Min Sci 42(4), 584-589.
https://doi.org/10.1016/j.ijrmms.2005.02.004.
[40] Yagiz, S. (2009). Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using Schmidt hammer.
Bull Eng Geol Env 68(1), 55-63.
https://doi.org/10.1007/s10064-008-0172-z.
[41] Karaman, K., & Kesimal, A. (2015). A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks.
Bull Eng Geol Env 74(2), 507-520.
https://doi.org/10.1007/s10064-014-0617-5.
[42] Okewale, I. A. (2015). Analyzing the influence of mineralogy on strength properties of carbonate rock in Sagamu and Ewekoro, Ogun state, Nigeria. American J. Eng. Res. 4(5), 233-238.
[43] Hassan, N.F., Jimoh, O. A., Shehu, S. A., & Hareyani, Z. (2019). The effect of mineralogical composition on strength and drillability of granitic rocs in Hulu Langat, Selangor Malaysia.
Geotech Geol Eng 1-7.
https://doi.org/10.1007/s10706-019-00995-x.
[44] Yasar, E., & Erdogan, Y. (2004). Correlating sound velocity with density, compressive strength and Young’s modulus of carbonate rocks.
Int J Rock Mech Min Sci 41(5), 871-875.
https://doi.org/10.1016/j.ijrmms.2004.01.012.