[1] Ball, A. (1986). The mechanisms of wear, and the performance of engineering materials. Journal of South African Institute of Mining and Metallurgy, 86, 1-13.
[2] Alavi Gharahbagh, E., Rostami, J., & Palomino, A. M. (2011). New soil abrasion testing method for soft ground tunneling applications. Tunnelling and Underground Space Technology, 26, 604–613. https://doi.org/10.1016/j.tust.2011.04.003.
[3] Thuro, K., Singer, J., Kasling, H., & Bauer, M. (2006). Soil abrasivity assessment using the LCPC testing device. Felsbau, 24, 37-45.
[4] Nilsen, B., Dahl, F., Holzhäuser, J., & Raleigh, P. (2006). SAT: NTNU’s new soil abrasion test. Tunnels & Tunneling International, May, 43-45.
[5] Nilsen, B., Dahl, F., Holzhäuser, J., & Raleigh, P. (2007). New test methodology for estimating the abrasiveness of soils for TBM tunneling. Proc. Rapid Excavation and Tunneling Conference (RETC), 11 June, 104-116.
[6] Jakobsen, P. D., Langmaack, L., Dahl, F., & Breivik, T. (2013). Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear, torque and thrust. Tunnelling and Underground Space Technology, 38, 398–408. https://doi.org/10.1016/j.tust.2013.07.021.
[7] Alavi Gharahbagh, E., Qiu, T., & Rostami, J. (2013). Evaluation of granular soil abrasivity for wear on cutting tools in excavation and tunneling equipment. Journal of Geotechnical and Geoenvironmental Engineering, 139, 1718-1726. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000897.
[8] Alavi Gharahbagh, E., Rostami, J., & Talebi, K. (2014). Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines. Tunnelling and Underground Space Technology, 41, 127-136. https://doi.org/10.1016/j.tust.2013.12.003.
[9] Alavi Gharahbagh, E., Qiu, T., & Rostami, J. (2014). Effect of Water Content on the Abrasivity of Granular Soils in Soft Ground Tunneling Applications. Proc. ASCE Geo-congress, 485-494.
[10] Rostami, J., Alavi Gharahbagh, E., Palomino, A., & Mosleh, M. (2012). Development of soil abrasivity testing for soft ground tunneling using shield machines. Tunnelling and Underground Space Technology, 28, 245- 256. https://doi.org/10.1016/j.tust.2011.11.007.
[11] Barzegari, G., Uromeihy, A., & Zhao, J. (2013). A newly developed soil abrasion testing method for tunnelling using shield machines. Quarterly Journal of Engineering Geology and Hydrogeology, 46, 63–74. https://doi.org/10.1144/qjegh2012-039.
[12] Barzegari, G., Uromeihy, A., & Zhao, J. (2015). Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects. Tunnelling and Underground Space Technology, 48, 43–57. https://doi.org/10.1016/j.tust.2014.10.010.
[13] Küpferle, J., Röttger, A., Theisen, W., & Alber, M. (2016). The RUB Tunneling Device – A newly developed test method to analyze and determine the wear of excavation tools in soils. Tunnelling and Underground Space Technology, 59, 1–6. https://doi.org/10.1016/j.tust.2016.06.006.
[14] Küpferle, J., Zizka, Z., Schoesser, B., Röttger, A., Alber, M., Thewes, M., & Theisen, W. (2018). Influence of the slurry-stabilized tunnel face on shield TBM tool wear regarding the soil mechanical changes – Experimental evidence of changes in the tribological system. Tunnelling and Underground Space Technology, 74, 206– 216. https://doi.org/10.1016/j.tust.2018.01.011.
[15] Drucker, P. (2011). Validity of the LCPC abrasivity coefficient through the example of a recent Danube gravel. Geomechanics and Tunneling, 6, 681 – 691. https://doi.org/10.1002/geot.201100051.
[16] Hashemnejad, H., Ghafoori, M., Lashkaripour, G. R., & Tariq Azali, S. (2012). Effect of geological parameters on soil Abrasivity using LCPC machine for predicting LAC. International Journal of Emerging Technology and Advanced Engineering, 2: 71-75.
[17] Hashemnejad, A., Ghafoori, M., & Tariq Azali, S. (2016). Utilizing water, mineralogy and sedimentary properties to predict LCPC abrasivity coefficient. Bulletin of Engineering Geology and Environment, 75, 841-851. https://doi.org/10.1007/s10064-015-0779-9.
[18] Jakobsen, P. D., Bruland, A., & Dahl, F. (2013). Review and assessment of the NTNU/SINTEF soil abrasion test (SAT) for determination of abrasiveness of soil and sot ground. Tunnelling and Underground Space Technology, 37, 107-114. https://doi.org/10.1016/j.tust.2013.04.003.
[19] Kahraman, S., Fener, M., Käsling, H., & Thuro, K. (2016). The influences of textural parameters of grains on the LCPC abrasivity of coarse-grained igneous rocks. Tunnelling and Underground Space Technology, 58, 216-223. https://doi.org/10.1016/j.tust.2016.05.011.
[20] Düllmann, J., Alber, M., & Plinninger, R. J. (2014). Determining soil abrasiveness by use of index tests versus using intrinsic soil parameters. Geomechanics and Tunneling, 7, 87-97. https://doi.org/10.1002/geot.201310028.
[21] Köhler, M., Maidl, U., & Martak, L. (2011). Abrasiveness and tool wear in shield tunneling in soil. Geomechanics and Tunneling, 4, 36-53. https://doi.org/10.1002/geot.201100002.
[22] Kulu, P., Tarbe, R., Käerdi, H., & Goljandin, D. (2009). Abrasivity and grindability study of mineral ores. Wear, 267, 1832-1837. https://doi.org/10.1016/j.wear.2009.02.025.
[23] Hamzaban, M. T., Jakobsen, P. D., Shakeri, H., & Najafi, R. (2019). Water Content, Effective Stress and Rotation Speed Impact on the Abrasivity of Granular Soils in Mechanized Excavation Applications. Tunnelling and Underground Space Technology, 87, 41–55. https://doi.org/10.1016/J.TUST.2019.02.003.
[24] Mirmehrabi, H., Ghafoori, M., & Lashkaripour, G. (2016). Impact of some geological parameters on soil abrasiveness. Bulletin of Engineering Geology and the Environment, 75, 1717–1725. https://doi.org/10.1007/s10064-015-0837-3.
[25] Sun, Z., Yang, Z., Jiang, Y., Gao, H., Fang, K., & Yin, M. (2021). Influence of particle size distribution, test time, and moisture content on sandy stratum LCPC abrasivity test results. Bulletin of Engineering Geology and the Environment, 80, 611-625. https://doi.org/10.1007/s10064-020-01927-3.
[26] Thuro, K., Singer, J., Käsling, H., & Bauer, M. (2007). Determining abrasivity with the LCPC test. Proceedings of the 1st Canada-US Rock Mechanics Symposium - Rock Mechanics Meeting Society’s Challenges and Demands, 827–834. https://doi.org/10.1201/noe0415444019-c103.
[27] Moradizadeh, M., & Cheshomi, A. (2021). Results of Cerchar, LCPC, and equivalent quartz content from rolling indentation abrasion testing in plutonic rock. Bulletin of Engineering Geology and the Environment, 80, 1-24. https://doi.org/10.1007/s10064-021-02356-6.
[28] Quirke, S., Scheffler, O., & Allen, C. (1988). An evaluation of the wear behaviour of metallic materials subjected to soil abrasion. Soil and Tillage Research, 11, 27–42. https://doi.org/10.1016/0167-1987(88)90029-3.
[29] Espallargas, N., Jakobsen, P. D., Langmaack, L., & Macias, F. J. (2015). Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling. Rock Mechanics and Rock Engineering, 48(1), 261–275. https://doi.org/10.1007/s00603-014-0552-6.
[30] AFNOR P18-579, 1990, Essai d’ abrasivite’ et de broyabilite’.
[31] Hamzaban, M. T., Hosseini Tavana, N., Jakobsen, P.D., & Bagheriyan, A. R. (2019). The Effect of the Plastic Behavior of Clay Particles on LCPC Abrasivity Coefficient. Tunnelling and Underground Space Technology, 92, 103054. https://doi.org/10.1016/j.tust.2019.103054