Effects of the water content and grain size on soil-cutting tools interactions: implications of LCPC abrasion test

Document Type : Research Paper

Authors

Mining Engineering Faculty, Sahand University of Technology, Tabriz, Iran

Abstract

Increasing demand for the application of mechanical excavation techniques in various civil and mining projects has increased the importance of ground abrasive properties and its mechanized excavatability. The accurate prognosis of cutting tools lifetime has crucial importance in the planning of mechanized tunneling projects. Moreover, the precise estimation of the required cutter number for excavating the determined length of a given section in a specific geotechnical condition is one of the main tasks of the project consultants. The main objective of these estimations is to assess the needed time and cost of cutter replacements in the phase of feasibility studies and to plan a proper maintenance schedule. The LCPC testing procedure is one of the simplest and most common soil abrasivity assessment methods. The purpose of the presented study is to investigate the steel – soil interaction during the LCPC abrasion test. The consumed energy of LCPC tests on different abrasive samples was measured. Based on the recorded energy values, a new parameter of wear specific energy of the LCPC test (WSEL) was introduced. The obtained WSEL values showed meaningful correlations with the sample grains size and the sample average hardness. Moreover, the results revealed that the high LCPC abrasion coefficient (LAC) values are relevant to the high consumed energy levels recorded during the tests.

Keywords


[1]    Ball, A. (1986). The mechanisms of wear, and the performance of engineering materials. Journal of South African Institute of Mining and Metallurgy, 86, 1-13.
[2]    Alavi Gharahbagh, E., Rostami, J., & Palomino, A. M. (2011). New soil abrasion testing method for soft ground tunneling applications. Tunnelling and Underground Space Technology, 26, 604–613. https://doi.org/10.1016/j.tust.2011.04.003.
[3]    Thuro, K., Singer, J., Kasling, H., & Bauer, M. (2006). Soil abrasivity assessment using the LCPC testing device. Felsbau, 24, 37-45.
[4]    Nilsen, B., Dahl, F., Holzhäuser, J., & Raleigh, P. (2006). SAT: NTNU’s new soil abrasion test. Tunnels & Tunneling International, May, 43-45.
[5]    Nilsen, B., Dahl, F., Holzhäuser, J., & Raleigh, P. (2007). New test methodology for estimating the abrasiveness of soils for TBM tunneling. Proc. Rapid Excavation and Tunneling Conference (RETC), 11 June, 104-116.
[6]    Jakobsen, P. D., Langmaack, L., Dahl, F., & Breivik, T. (2013). Development of the Soft Ground Abrasion Tester (SGAT) to predict TBM tool wear, torque and thrust. Tunnelling and Underground Space Technology, 38, 398–408. https://doi.org/10.1016/j.tust.2013.07.021.
[7]    Alavi Gharahbagh, E., Qiu, T., & Rostami, J. (2013). Evaluation of granular soil abrasivity for wear on cutting tools in excavation and tunneling equipment. Journal of Geotechnical and Geoenvironmental Engineering, 139, 1718-1726. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000897.
[8]    Alavi Gharahbagh, E., Rostami, J., & Talebi, K. (2014). Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines. Tunnelling and Underground Space Technology, 41, 127-136. https://doi.org/10.1016/j.tust.2013.12.003.
[9]    Alavi Gharahbagh, E., Qiu, T., & Rostami, J. (2014). Effect of Water Content on the Abrasivity of Granular Soils in Soft Ground Tunneling Applications. Proc. ASCE Geo-congress, 485-494.
[10]  Rostami, J., Alavi Gharahbagh, E., Palomino, A., & Mosleh, M. (2012). Development of soil abrasivity testing for soft ground tunneling using shield machines. Tunnelling and Underground Space Technology, 28, 245- 256. https://doi.org/10.1016/j.tust.2011.11.007.
[11]   Barzegari, G., Uromeihy, A., & Zhao, J. (2013). A newly developed soil abrasion testing method for tunnelling using shield machines. Quarterly Journal of Engineering Geology and Hydrogeology, 46, 63–74. https://doi.org/10.1144/qjegh2012-039.
[12]  Barzegari, G., Uromeihy, A., & Zhao, J. (2015). Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects. Tunnelling and Underground Space Technology, 48, 43–57. https://doi.org/10.1016/j.tust.2014.10.010.
[13]  Küpferle, J., Röttger, A., Theisen, W., & Alber, M. (2016). The RUB Tunneling Device – A newly developed test method to analyze and determine the wear of excavation tools in soils. Tunnelling and Underground Space Technology, 59, 1–6. https://doi.org/10.1016/j.tust.2016.06.006.
[14]  Küpferle, J., Zizka, Z., Schoesser, B., Röttger, A., Alber, M., Thewes, M., & Theisen, W. (2018). Influence of the slurry-stabilized tunnel face on shield TBM tool wear regarding the soil mechanical changes – Experimental evidence of changes in the tribological system. Tunnelling and Underground Space Technology, 74, 206– 216. https://doi.org/10.1016/j.tust.2018.01.011.
[15]  Drucker, P. (2011). Validity of the LCPC abrasivity coefficient through the example of a recent Danube gravel. Geomechanics and Tunneling, 6, 681 – 691. https://doi.org/10.1002/geot.201100051.
[16]  Hashemnejad, H., Ghafoori, M., Lashkaripour, G. R., & Tariq Azali, S. (2012). Effect of geological parameters on soil Abrasivity using LCPC machine for predicting LAC. International Journal of Emerging Technology and Advanced Engineering, 2: 71-75.
[17]  Hashemnejad, A., Ghafoori, M., & Tariq Azali, S. (2016). Utilizing water, mineralogy and sedimentary properties to predict LCPC abrasivity coefficient. Bulletin of Engineering Geology and Environment, 75, 841-851. https://doi.org/10.1007/s10064-015-0779-9.
[18]  Jakobsen, P. D., Bruland, A., & Dahl, F. (2013). Review and assessment of the NTNU/SINTEF soil abrasion test (SAT) for determination of abrasiveness of soil and sot ground. Tunnelling and Underground Space Technology, 37, 107-114. https://doi.org/10.1016/j.tust.2013.04.003.
[19]  Kahraman, S., Fener, M., Käsling, H., & Thuro, K. (2016). The influences of textural parameters of grains on the LCPC abrasivity of coarse-grained igneous rocks. Tunnelling and Underground Space Technology, 58, 216-223. https://doi.org/10.1016/j.tust.2016.05.011.
[20] Düllmann, J., Alber, M., & Plinninger, R. J. (2014). Determining soil abrasiveness by use of index tests versus using intrinsic soil parameters. Geomechanics and Tunneling, 7, 87-97. https://doi.org/10.1002/geot.201310028.
[21]  Köhler, M., Maidl, U., & Martak, L. (2011). Abrasiveness and tool wear in shield tunneling in soil. Geomechanics and Tunneling, 4, 36-53. https://doi.org/10.1002/geot.201100002.
[22] Kulu, P., Tarbe, R., Käerdi, H., & Goljandin, D. (2009). Abrasivity and grindability study of mineral ores. Wear, 267, 1832-1837. https://doi.org/10.1016/j.wear.2009.02.025.
[23]  Hamzaban, M. T., Jakobsen, P. D., Shakeri, H., & Najafi, R. (2019). Water Content, Effective Stress and Rotation Speed Impact on the Abrasivity of Granular Soils in Mechanized Excavation Applications. Tunnelling and Underground Space Technology, 87, 41–55. https://doi.org/10.1016/J.TUST.2019.02.003.
[24] Mirmehrabi, H., Ghafoori, M., & Lashkaripour, G. (2016). Impact of some geological parameters on soil abrasiveness. Bulletin of Engineering Geology and the Environment, 75, 1717–1725. https://doi.org/10.1007/s10064-015-0837-3.
[25]  Sun, Z., Yang, Z., Jiang, Y., Gao, H., Fang, K., & Yin, M. (2021). Influence of particle size distribution, test time, and moisture content on sandy stratum LCPC abrasivity test results. Bulletin of Engineering Geology and the Environment, 80, 611-625. https://doi.org/10.1007/s10064-020-01927-3.
[26]  Thuro, K., Singer, J., Käsling, H., & Bauer, M. (2007). Determining abrasivity with the LCPC test. Proceedings of the 1st Canada-US Rock Mechanics Symposium - Rock Mechanics Meeting Society’s Challenges and Demands, 827–834. https://doi.org/10.1201/noe0415444019-c103.
[27]  Moradizadeh, M., & Cheshomi, A. (2021). Results of Cerchar, LCPC, and equivalent quartz content from rolling indentation abrasion testing in plutonic rock. Bulletin of Engineering Geology and the Environment, 80, 1-24. https://doi.org/10.1007/s10064-021-02356-6.
[28] Quirke, S., Scheffler, O., & Allen, C. (1988). An evaluation of the wear behaviour of metallic materials subjected to soil abrasion. Soil and Tillage Research, 11, 27–42. https://doi.org/10.1016/0167-1987(88)90029-3.
[29] Espallargas, N., Jakobsen, P. D., Langmaack, L., & Macias, F. J. (2015). Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling. Rock Mechanics and Rock Engineering, 48(1), 261–275. https://doi.org/10.1007/s00603-014-0552-6.
[30]  AFNOR P18-579, 1990, Essai d’ abrasivite’ et de broyabilite’.
[31]  Hamzaban, M. T., Hosseini Tavana, N., Jakobsen, P.D., & Bagheriyan, A. R. (2019). The Effect of the Plastic Behavior of Clay Particles on LCPC Abrasivity Coefficient. Tunnelling and Underground Space Technology, 92, 103054. https://doi.org/10.1016/j.tust.2019.103054