[1] Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J.L., Proux, O., Domas, J.,& Bottero, J.Y. (2007).Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. J. Hazardous Materials.139(3), 537-542.doi:10.1016/j.hydromet.2010.01.006
[2] Conejo, A. N., Birat, J. P., & Dutta, A. (2020). A review of the current environmental challenges of the steel industry and its value chain. Journal of environmental management, 259, 109782. doi:
https://doi.org/10.1016/j.jenvman.2019.109782.
[3] Sarkar, S.,& Mazumder, D., (2015). Solid Waste Management in Steel Industry Challenges and Opportunities. Engineering and Technology International Journal of Social.19(3). doi:10.1999/1307-6892/10001005.
[4] Knittel, D.,(1983).Titanium and titanium alloysIn: Grayson, M. (Ed.), 3rd edition. Encyclopaedia of Chemical Technology. 23. John Wiley and Sons, 131-176.
[5] Zhang, W., Zhu, Z.,& Cheng, C.Y., (2011). A literature review of titanium metallurgical processes. J Hydrometallurgy.108(3–4), 177-188. doi:10.1016/j.hydromet.2011.04.005.
[6] Sahu, K.K., Alex, T.C., Mishra, D.,& Agrawal, A., (2006).An overview on the production of pigment grade titania fromtitania[1]rich slag. J Waste Management & Research.24(1), 74-79. doi:10.1177/0734242X06061016.
[8] Hamor, L.,(1986).Titanium Dioxide Manufacture, a World Source of Ilmenite,Rutile, Monazite and Zircon. Conference Proceedings. AusIMM, Perth. W.A, 143-146.
[9] Croce, P.S.,& Mousavi, A,. (2013).A sustainable sulfate process to produce TiO2 pigments. Environmental Chemistry Letters, 11(4),325-328. doi: 10.1007/s10311-013-0410-x.
[10] Manaa, E-S.A., (2016).Titania preparation from soda roasted slag using sulfuric acid solution.Journal of Saudi Chemical Society.20(6), 673-679. doi:http://dx.doi.org/10.1016/j.jscs.2014.12.005.
[12] Qu, Xi.M., Guo1, Y., Zheng, F., Jiang, T.,&Qiu, G.Z., (2016).Performance of Sulfuric Acid Leaching of Titanium from Titanium-Bearing Electric Furnace Slag. J. Materials Science Research,5(4). doi:10.5539/jmsr.v5n4p1.
[13] Lasheen, T.A., (2008).Soda ash roasting of titania slag product from Rosetta ilmenite. J Hydrometallurgy.93(3),124-128. doi:10.1016/j.hydromet.2008.02.020.
[14] Feng, Y., Wang, J., Wang, L., Qi, T., Xue, T.,&Chu, J., (2008).Decomposition of acid dissolved titanium slag from Australia by sodium hydroxide. J Rare Metals, 28(6):, 564. doi:10.1007/s12598-009-0109-0.
[15] Meng, F, Xue, T., Liu, Y., Wang, W.,& Qi, T., (2016). Treatment of tionite residue from titanium oxide industry for recovery of TiO2 and removal of silica. J Hydrometallurgy, 161,112-116. doi:http://dx.doi.org/10.1016/j.hydromet.2016.02.001.
[16] Meng, F., Xue, T., Liu, Y., Zhang, G. & Qi, T., (2016).Recoveryof titanium from undissolved residue (tionite) in titanium oxide industry via NaOH hydrothermal conversion and H2SO4 leaching.J Transactions of Nonferrous Metals Society of China. 26(6),1696-1705. doi:10.1016/S1003-6326(16)64247-4.
[17] Liu, Z.& Li, H., (2015).Metallurgical process for valuable elements recovery from red mud—A review. J Hydrometallurgy,155, 29-43. doi:https://doi.org/10.1016/j.hydromet.2015.03.018.
[18] Sui, L., Zhai, Y.,& Miao, L., (2015).Recovery of titania from high titanium slag by roasting method using concentrated sulfuric acid. J Rare Metals.34(12), 895-900. doi:10.1007/s12598-014-0359- 3.
[19] Tang, D., Zhou, D., Zhou, J., Zhang, P., Zhang, L.,&Xia, Y., (2015).Preparation of H2TiO3–lithium adsorbent using low-grade titanium slag. Hydrometallurgy, 157, 90-96. doi:http://dx.doi.org/10.1016/j.hydromet.2015.07.009.
[20] Li.li, S.,& Yu-chun, Z., (2014).Reaction kinetics of roasting high[1]titanium slag with concentrated sulfuric acid. J Transactions of Nonferrous Metals Society of China.24(3), 848−853. doi:https://doi.org/10.1016/S1003-6326(14)63134-4.
[21] Cong-xue, T., Shuanghua, H.,& Ying, Y., (2013).Anatase TiO2 white pigment production from unenriched industrial titanyl sulfate solution via short sulfate process Dyes and Pigments. J Dyes and Pigments. 609-613. doi:https://doi.org/10.1016/j.dyepig.2012.09.016.
[22] Meng, F., Liu, Y.; Wang, L., Chen, D., Zhao, H., Zhen, Y.,Chen, J., Qi, T. (2021). Vibrational Spectral Analysis of Natisite (Na2TiSiO5) and its Structure Evolution in Water and Sulfuric Acid Solutions. Materials. 14(9):2259. doi:https://doi.org/10.3390/ma14092259
[23] He, S., Peng, T., & Sun, H. (2019). Titanium recovery from Ti[1]bearing blast furnace slag by alkali calcination and acidolysis. Jom, 71(9), 3196-3201. doi: https://doi.org/10.1007/s11837-019- 03575-9.
[24] Khayet, M., Seman, M. A., & Hilal, N. (2010). Response surface modeling and optimization of composite nanofiltration modified membranes. Journal of Membrane Science, 349(1-2), 113-122. doi:
https://doi.org/10.1016/j.memsci.2009.11.031.
[25] Aslan, N., (2008). Application of Response Surface Methodology and Central Composite Rotatable Design for Modeling and Optimization of a Multi-Gravity Separator for Chromite Concentration.185, 80- 86doi:https://doi.org/10.1016/j.powtec.2007.10.002.
[26] Gul Akar, S., (2016). Application of Full Factorial Experimental 96 M. Fattahpour et al. / Int. J. Min. & Geo-Eng. (IJMGE), 55-1 (2021) 89-94 Design and Response Surface Methodology for Chromite Beneficiation by Knelson Concentrator. Journal of Mineral Processing and Extractive Metallurgy.6(1), 1-11.doi:10.3390/min6010005.
[27] Saafie, N., Samsudin, M. F. R., & Sufian, S. (2020). Optimization of methylene blue adsorption via functionalized activated carbon using response surface methodology with central composite design. In Key Engineering Materials (Vol. 841, pp. 220-224). Trans Tech Publications Ltd. doi:
https://doi.org/10.4028/www.scientific.net/KEM.841.220.
[28] Azizi, A., & Ghaedrahmati, R., (2015). Optimizing and evaluating the operational factors affecting the cyanide leaching circuit of the Aghdareh gold processing plant using a CCD model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 471(2184). doi:
http://dx.doi.org/10.1098/rspa.2015.0681.
[29] Aslan, N. (2007). Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuel, 86(5-6), 769-776. doi:
https://doi.org/10.1016/j.fuel.2006.10.020.
[30] Jozanikohan, G., Sahabi, F., Norouzi, G. H., Memarian, H., & Moshiri, B. (2016). Quantitative analysis of the clay minerals in the Shurijeh Reservoir Formation using combined X-ray analytical techniques. Russian Geology and Geophysics, 57(7), 1048-1063. doi: https://doi.org/10.1016/j.rgg.2016.06.005.