The Modeling and Optimization of Titanium Dioxide Extraction, Case study: The Slag Sample of Blast Furnace

Document Type : Research Paper

Authors

1 School of Mining, College of Engineering, University of Tehran, Tehran 1439957131, Iran

2 Assistant Professor, Ph.D in Mining Engineering (Mineral Exploration), School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

In this research work, the application of the Response Surface Methodology (RSM) and the Central Composite Design (CCD) techniques for modeling and optimization of some of the operating variables on the titanium dioxide extraction were studied. This study was performed, using sodium hydroxide roasting and sulfuric acid leaching. Four main parameters, i.e., leaching temperature, time, liquid to solid ratio, and the concentration of acid, were changed during the experiments. The two parameters of the stirring rate (250 rpm), and the feed size (d80= 106 micrometers) were considered to be constant. Based on the findings, several empirical equations were modeled for the titanium dioxide extraction with the above mentioned parameters. The empirical equations were then individually optimized by employing the quadratic programming to maximize the extraction within the experimental range. In conclusion, the optimum conditions were accordingly obtained at 85°C, 235 minutes, liquid to solid ratio of 15, and the acid concentration of 2.4 M, in which the maximum TiO2 extraction of 81.32% was achieved.

Keywords


[1] Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J.L., Proux, O., Domas, J.,& Bottero, J.Y. (2007).Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. J. Hazardous Materials.139(3), 537-542.doi:10.1016/j.hydromet.2010.01.006
[2] Conejo, A. N., Birat, J. P., & Dutta, A. (2020). A review of the current environmental challenges of the steel industry and its value chain. Journal of environmental management, 259, 109782. doi: https://doi.org/10.1016/j.jenvman.2019.109782.
[3] Sarkar, S.,& Mazumder, D., (2015). Solid Waste Management in Steel Industry Challenges and Opportunities. Engineering and Technology International Journal of Social.19(3). doi:10.1999/1307-6892/10001005.
[4] Knittel, D.,(1983).Titanium and titanium alloysIn: Grayson, M. (Ed.), 3rd edition. Encyclopaedia of Chemical Technology. 23. John Wiley and Sons, 131-176.
[5] Zhang, W., Zhu, Z.,& Cheng, C.Y., (2011). A literature review of titanium metallurgical processes. J Hydrometallurgy.108(3–4), 177-188. doi:10.1016/j.hydromet.2011.04.005.
[6] Sahu, K.K., Alex, T.C., Mishra, D.,& Agrawal, A., (2006).An overview on the production of pigment grade titania fromtitania[1]rich slag. J Waste Management & Research.24(1), 74-79. doi:10.1177/0734242X06061016.
[7] Middlemas, S., Fang, Z.Z.,&Fan P., (2013).A new method for production of titanium dioxide pigment. J Hydrometallurgy.131– 132, 107-113. doi: https://doi.org/10.1016/j.hydromet.2012.11.002.
[8] Hamor, L.,(1986).Titanium Dioxide Manufacture, a World Source of Ilmenite,Rutile, Monazite and Zircon. Conference Proceedings. AusIMM, Perth. W.A, 143-146.
[9] Croce, P.S.,& Mousavi, A,. (2013).A sustainable sulfate process to produce TiO2 pigments. Environmental Chemistry Letters, 11(4),325-328. doi: 10.1007/s10311-013-0410-x.
[10] Manaa, E-S.A., (2016).Titania preparation from soda roasted slag using sulfuric acid solution.Journal of Saudi Chemical Society.20(6), 673-679. doi:http://dx.doi.org/10.1016/j.jscs.2014.12.005.
[11] Haverkamp, R.G., Kruger, D.,& Rajashekar, R., (2016).The digestion of New Zealand ilmenite by hydrochloric acid. J Hydrometallurgy.163, 198-203. doi: http://dx.doi.org/10.1016/j.hydromet.2016.04.015.
[12] Qu, Xi.M., Guo1, Y., Zheng, F., Jiang, T.,&Qiu, G.Z., (2016).Performance of Sulfuric Acid Leaching of Titanium from Titanium-Bearing Electric Furnace Slag. J. Materials Science Research,5(4). doi:10.5539/jmsr.v5n4p1.
[13] Lasheen, T.A., (2008).Soda ash roasting of titania slag product from Rosetta ilmenite. J Hydrometallurgy.93(3),124-128. doi:10.1016/j.hydromet.2008.02.020.
[14] Feng, Y., Wang, J., Wang, L., Qi, T., Xue, T.,&Chu, J., (2008).Decomposition of acid dissolved titanium slag from Australia by sodium hydroxide. J Rare Metals, 28(6):, 564. doi:10.1007/s12598-009-0109-0.
[15] Meng, F, Xue, T., Liu, Y., Wang, W.,& Qi, T., (2016). Treatment of tionite residue from titanium oxide industry for recovery of TiO2 and removal of silica. J Hydrometallurgy, 161,112-116. doi:http://dx.doi.org/10.1016/j.hydromet.2016.02.001.
[16] Meng, F., Xue, T., Liu, Y., Zhang, G. & Qi, T., (2016).Recoveryof titanium from undissolved residue (tionite) in titanium oxide industry via NaOH hydrothermal conversion and H2SO4 leaching.J Transactions of Nonferrous Metals Society of China. 26(6),1696-1705. doi:10.1016/S1003-6326(16)64247-4.
[17] Liu, Z.& Li, H., (2015).Metallurgical process for valuable elements recovery from red mud—A review. J Hydrometallurgy,155, 29-43. doi:https://doi.org/10.1016/j.hydromet.2015.03.018.
[18] Sui, L., Zhai, Y.,& Miao, L., (2015).Recovery of titania from high titanium slag by roasting method using concentrated sulfuric acid. J Rare Metals.34(12), 895-900. doi:10.1007/s12598-014-0359- 3.
[19] Tang, D., Zhou, D., Zhou, J., Zhang, P., Zhang, L.,&Xia, Y., (2015).Preparation of H2TiO3–lithium adsorbent using low-grade titanium slag. Hydrometallurgy, 157, 90-96. doi:http://dx.doi.org/10.1016/j.hydromet.2015.07.009.
[20] Li.li, S.,& Yu-chun, Z., (2014).Reaction kinetics of roasting high[1]titanium slag with concentrated sulfuric acid. J Transactions of Nonferrous Metals Society of China.24(3), 848−853. doi:https://doi.org/10.1016/S1003-6326(14)63134-4.
[21] Cong-xue, T., Shuanghua, H.,& Ying, Y., (2013).Anatase TiO2 white pigment production from unenriched industrial titanyl sulfate solution via short sulfate process Dyes and Pigments. J Dyes and Pigments. 609-613. doi:https://doi.org/10.1016/j.dyepig.2012.09.016.
[22] Meng, F., Liu, Y.; Wang, L., Chen, D., Zhao, H., Zhen, Y.,Chen, J., Qi, T. (2021). Vibrational Spectral Analysis of Natisite (Na2TiSiO5) and its Structure Evolution in Water and Sulfuric Acid Solutions. Materials. 14(9):2259. doi:https://doi.org/10.3390/ma14092259
[23] He, S., Peng, T., & Sun, H. (2019). Titanium recovery from Ti[1]bearing blast furnace slag by alkali calcination and acidolysis. Jom, 71(9), 3196-3201. doi: https://doi.org/10.1007/s11837-019- 03575-9.
[24] Khayet, M., Seman, M. A., & Hilal, N. (2010). Response surface modeling and optimization of composite nanofiltration modified membranes. Journal of Membrane Science, 349(1-2), 113-122. doi: https://doi.org/10.1016/j.memsci.2009.11.031.
[25] Aslan, N., (2008). Application of Response Surface Methodology and Central Composite Rotatable Design for Modeling and Optimization of a Multi-Gravity Separator for Chromite Concentration.185, 80- 86doi:https://doi.org/10.1016/j.powtec.2007.10.002.
[26] Gul Akar, S., (2016). Application of Full Factorial Experimental 96 M. Fattahpour et al. / Int. J. Min. & Geo-Eng. (IJMGE), 55-1 (2021) 89-94 Design and Response Surface Methodology for Chromite Beneficiation by Knelson Concentrator. Journal of Mineral Processing and Extractive Metallurgy.6(1), 1-11.doi:10.3390/min6010005.
[27] Saafie, N., Samsudin, M. F. R., & Sufian, S. (2020). Optimization of methylene blue adsorption via functionalized activated carbon using response surface methodology with central composite design. In Key Engineering Materials (Vol. 841, pp. 220-224). Trans Tech Publications Ltd. doi: https://doi.org/10.4028/www.scientific.net/KEM.841.220.
[28] Azizi, A., & Ghaedrahmati, R., (2015). Optimizing and evaluating the operational factors affecting the cyanide leaching circuit of the Aghdareh gold processing plant using a CCD model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 471(2184). doi: http://dx.doi.org/10.1098/rspa.2015.0681.
[29] Aslan, N. (2007). Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuel, 86(5-6), 769-776. doi: https://doi.org/10.1016/j.fuel.2006.10.020.
[30] Jozanikohan, G., Sahabi, F., Norouzi, G. H., Memarian, H., & Moshiri, B. (2016). Quantitative analysis of the clay minerals in the Shurijeh Reservoir Formation using combined X-ray analytical techniques. Russian Geology and Geophysics, 57(7), 1048-1063. doi: https://doi.org/10.1016/j.rgg.2016.06.005.