[1] Ghezelbash, R., Maghsoudi, A., & Carranza, E. J. M. (2019). Performance evaluation of RBF-and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of SA multifractal model and mineralization controls. Earth Science Informatics, 1-17.
[2] Parsa, M., Maghsoudi, A., Yousefi, M., & Carranza, E. J. M. (2017). Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: implications for mapping exploration targets. Journal of African Earth Sciences, 128, 5-15.
[3] Cao, L., Cheng, Q. (2012). Quantification of anisotropic scale invariance of geochemical anomalies associated with Sn-Cu mineralization in Gejiu, Yunan Province, China, Geochemical Exploration 122, 47–54.
[4] Fyzollahhi, N., Torshizian, H., Afzal, P., & Jafari, M. R. (2018). Determination of lithium prospects using fractal modelling and staged factor analysis in Torud region, NE Iran. Journal of Geochemical Exploration, 189, 2-10.
[5] Zuo, R. (2011). Identifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal the Gangdese Belt, Tibet (China). J. Geochemical Exploration. 111, 13-22.
[6] Zuo, R. (2011). Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Applied Geochemistry 26, S271-S273.
[7] Zuo, R., Carranza, E.J.M. & Cheng, Q. (2012). Fractal/multifractal modelling of geochemical exploration data. Journal of Geochemical Exploration 122, 1-3.
[8] Zuo, R., Xia, Q. & Zhang, D. (2013). A comparison study of the C-A H. Mahdiyanfar & M. Farzamian / Int. J. Min. & Geo-Eng. (IJMGE), 55-1 (2021) 81-89 89 and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Applied Geochemistry 33, 165-172.
[9] Ghezelbash, R., Maghsoudi, A., & Daviran, M. (2019). Combination of multifractal geostatistical interpolation and spectrum–area (S– A) fractal model for Cu–Au geochemical prospects in Feizabad district, NE Iran. Arabian Journal of Geosciences, 12(5), 152.
[10] Shokouh Saljoughi, B., Hezarkhani, A., & Farahbakhsh, E. (2018). A comparative study of fractal models and U-statistic method to identify geochemical anomalies; case study of Avanj porphyry system, Central Iran. Journal of Mining and Environment, 9(1), 209-227.
[11] Zuo, R., Wang, J. (2015). Fractal/multifractal modeling of geochemical data: A review. Journal of Geochemical Exploration.
[12] Wang, H., Zuo, R. (2015). A comparative study of trend surface analysis and spectrum–area multifractal model to identify geochemical anomalies. Journal of Geochemical Exploration, 155, 84-90.
[13] Wang, J., Zuo, R. (2015). A MATLAB-based program for processing geochemical data using fractal/multifractal modeling. Earth Science Informatics, 1-11.
[14] Shahi, H., Ghavami, R., Kamkar Rouhani, A. & Asadi-Haroni, H. (2014). Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach, journal of Geopersia, 4 (2), 101-110.
[15] Shahi, H., Ghavami Riabi, R., Kamkar Ruhani, A. & Asadi Haroni, H. (2015). Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit. Journal of Mining and Environment, 6(2), pp.225-236.
[16] Shahi, H., Ghavami, R., Kamkar Rouhani, A. & Asadi-Haroni, H. (2015). Application of Fourier and wavelet approaches for identification of geochemical anomalies, Journal of African Earth Sciences 106. 118–128.
[17] Shahi, H., Ghavami, R., & Rouhani, A. K. (2016). Detection of deep and blind mineral deposits using new proposed frequency coefficients method in frequency domain of geochemical data. Journal of Geochemical Exploration.
[18] Roberts, R.G., Sheahan, P., Cherry, M.E. (Eds.), (1988). Ore deposit models: Geoscience Canada Reprint Series 3. Geological Association of Canada, Newfoundland. 200 p.
[19] Cox, D.P., Singer, D.A. (Eds.), (1986). Mineral Deposit Models. U.S. Geological Survey Bulletin 1693. U.S. Government Printing Office, Washington. 379 p.
[20] Carranza, E.J.M, Sadeghi, M. (2012). Primary geochemical characteristics of mineral deposits - Implications for exploration, Ore Geology Reviews 45.1–4.
[21] Grigorian, S.V. (1985). Secondary Lithochemical Halos in Prospecting for Hidden Mineralization. Nedra Publishing House, Moscow.
[22] Grigorian, S.V. (1992). Mining Geochemistry. Nedra Publishing House, Moscow.
[23] Hassani, H., Daya, A., Alinia, F. (2009). Application of a fractal method relating power spectrum and area for separation of geochemical anomalies from background. Aust J Basic Appl Sci, 3(4), 3307-3320 .
[25] Dobrin, M. B., Savit, C. H. (1988). Geophysical propecting: McGraw-Hill Book Co., New York, 867 p.
[26] Bhattacharyya, B.K. (1966). Continuous spectrum of the total[1]magnetic-field anomaly due to a rectangular prismatic body. Geophysics, 31(1), 97-121 .
[27] Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70 .
[28] Cheng, Q. (2014). Vertical distribution of elements in regolith over mineral deposits and implications for mapping geochemical weak anomalies in covered areas. Geochemistry: Exploration, Environment, Analysis, 14(3), 277-289.
[29] Farzamian, M., Rouhani, A. K., Yarmohammadi, A., Shahi, H., Sabokbar, H. F., & Ziaiie, M. (2016). A weighted fuzzy aggregation GIS model in the integration of geophysical data with geochemical and geological data for Pb–Zn exploration in Takab area, NW Iran. Arabian Journal of Geosciences, 9(2), 104.