[1] Ahmad, M., Ansari, M. K., Sharma, L. K., Singh, R., & Singh, T. N. (2017). Correlation between strength and durability indices of rocks-soft computing approach. Procedia engineering, 191, 458- 466. doi.org/10.1016/j.proeng.2017.05.204
[2] Arman, H., Eltokhi, M., Abdelghany, O., Mahmoud, B., & Saima, M. A. (2016). Slake Durability Test on Lower Oligocene Limestones from Al Ain City, United Arab Emirates. Journal of Earth Science & Climatic Change, 7(356), 2. DOI: 10.4172/2157- 7617.1000356.
[3] Asadizadeh, M., & Hossaini, M. F. (2016). Predicting rock mass deformation modulus by artificial intelligence approach based on dilatometer tests. Arabian Journal of Geosciences, 9(2), 96. DOI 10.1007/s12517-015-2189-5
[4] Bayram, F. (2012). Predicting mechanical strength loss of natural stones after freeze–thaw in cold regions. Cold Regions Science and Technology, 83, 98-102. DOI: 10.1016/j.coldregions.2012.07.003
[5] Bryson, L.S., .Gomez-Gutierrez, I. C., & Hopkins, T.C. (2012). Development of a new durability index for compacted shale. Engineering Geology,139-140, 66-75. https://doi.org/10.1016/j.enggeo.2012.04.011.
[6] Crosta, G. (1998). Slake durability vs ultrasonic treatment for rock durability determinations. International Journal of Rock ` S. Farashi et al. / Int. J. Min. & Geo-Eng. (IJMGE), 55-1 (2021) 59-66 63 Mechanics and Mining Sciences, 35(6), 815–824, doi.org/10.1016/S0148-9062(98)00006-0.
[7] European Norms of Turkish Standards (2000). Natural stone products determination of compressive strength. European Committee for Standardization, 10 pp. TS EN 1926
[8] Fereidooni, D., & Khajevand, R. (2018). Correlations Between Slake-Durability Index and Engineering Properties of Some Travertine Samples Under Wetting–Drying Cycles. Geotechnical and Geological Engineering, 36(2), 1071-1089. DOI: 10.1007/s10706-017-0376-8
[9] Franklin, J.A., & Chandra, A. (1972). The slake durability test. International Journal of Rock Mechanics and Mining Sciences, 9(1), 325–341. doi.org/10.1016/0148-9062(72)90001-0
[10] Ghobadi, M.H., & Naseri, F. (2016). Rock brittleness prediction using geomechanical properties of Hamekasi limestone: regression and artificial neural networks analysis. Geopersia, 6(1), 19-33. (DOI): 10.22059/jgeope.2016.57819
[11] Gupta, V., & Ahmed, I. (2007). The effect of pH of water and mineralogical properties on the slake durability (degradability) of different rocks from the Lesser Himalaya, India. Engineering Geology, 95, 79–87.
https://doi.org/10.1016/j.enggeo.2007.09.004
[12] Heidari, M., Momeni, A.A., & Naseri, F. (2013). New weathering classifications for granitic rocks based on geomechanical parameters. Engineering geology, 166, 65-73. DOI: 10.1016/j.enggeo.2013.08.007
[13] ISRM, (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18, 85
[14] ISRM, (1981). ISRM suggested methods: rock characterization. Testing and Monitoring: International Society of Rock Mechanics Suggested Methods.Pergamon Press, London.
[15] Kadane, J.B., & Lazar, N.A.)2004(. Methods and criteria for model selection. Journal of the American Statistical Association, 99, 279–290. DOI 10.1198/016214504000000269.
[16] Khalily, M., Lashkaripour, G. R., Ghafoori, M., Khanehbad, M., & Dehghan, P. (2013). Durability characterization of Abderaz marly limestone in the Kopet-Dagh Basin, NE of Iran. International Journal of Emerging Technology and Advanced Engineering, 3(5),50-56.
[17] Khanlari, G. R., Abdilor, Y., & Babazadeh, R. (2014). Landslide hazards zonation using GIS in Khoramabad, Iran. Journal of Geotechnical Geology (Applied geology), 9(4), 344-352.
[18] Khanlari, G.R., & Naseri, F. (2018). Prediction of aggregate modified index (AMI) using geomechanical properties of limestones. Bulletin of Engineering Geology and the Environment, 77(2), 803-814. DOI 10.1007/s10064-016-0984-1
[19] Khanlari, G., Naseri, F., & Osmanpour, A. (2015). Introducing a new Aggregates Index (AI) Using Petrograghical and Geomechanical Properties (Case Study: Hamedan Province Limestones).
[20] Koncagul, E.C., & Santi, P.M. (1999). Predicting the unconfined compressive strength of the Breathitt shale using slake durability, shore hardness and rock structural properties. International Journal of Rock Mechanics and Mining Sciences, 36, 139–153.
https://doi.org/10.1016/S0148-9062(98)00174-0
[21] Koralegedara, N.H. & Maynard, J.B. (2017). Chemical, mineralogical and textural properties of the Kope Formation mudstones: How they affect its durability. Engineering geology, 228, 312-322.
https://doi.org/10.1016/j.enggeo.2017.08.025
[22] Li, D., Masoumi, H., Saydam, S., Hagan, P. C., & Asadizadeh, M. (2018). Parametric study of fully grouted cable bolts subjected to axial loading. Canadian Geotechnical Journal, (ja). doi.org/10.1139/cgj-2018-0470
[23] Moradian, Z.A., Ghazvinian, A.H., Ahmadi, M. & Behnia, M. (2010). Predicting slake durability index of soft sandstone using indirect tests. International Journal of Rock Mechanics and Mining Sciences. 4(47), 666-671.
https://doi.org/10.1016/j.ijrmms.2010.02.001
[24] Onodera, T.F., Yosinaka, R., & Oda, M. (1974). Weathering and its relation to mechanical properties of granite. In: Proceedings of the 3 rd congress of ISRM, Denver, Leiden, 2 (A). A.A. Balkema, 71–78
[25] Rezaei, M., Davoodi, P. K., & Najmoddin, I. (2019). Studying the correlation of rock properties with P-wave velocity index in dry and saturated conditions. Journal of Applied Geophysics. 169, 49-57. doi.org/10.1016/j.jappgeo.2019.04.017
[26] Rastegarian, V., Heidari, M., Rafiei, B., & Mohebi, Y. (2016). Prediction of long-term slake durability of clay-bearing rocks. Geopersia, 6(1), 35-43. DOI: 10.22059/jgeope.2016.57820
[27] Sharma, P.K., & Singh, T.N. (2008). A correlation between P[1]wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment. 67(1), 17–22.
http://dx.doi.org/10.1007/s10064-007-0109-y
[29] Taghipour, M., Nikudel, M. R., & Farhadian, M. B. (2016). Engineering properties and durability of limestones used in Persepolis complex, Iran, against acid solutions. Bulletin of Engineering Geology and the Environment, 75(3), 967-978. DOI: 10.1007/s10064-015-0821-y
[30] Tasdemir, Y., Kolay, E., & Kayabali, K. (2013). Comparison of three artificial neural network approaches for estimating of slake durability index. Environmental earth sciences, 68(1), 23- 31. DOI: 10.1007/s12665-012-1702-3.
[31] Torabi-Kaveh, M., Naseri, F., Saneie, S. & Sarshari, B. (2015). Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arabian journal of Geosciences. 8(5), 2889- 2897. DOI 10.1007/s12517-014-1331-0
[32] Yagiz, S., & Akyol, E. (2008) Investigation on the relationship between lithological features and slake durability index of travertine. Project no: 2006/MHF-004 (unpublished report)
[33] Yagiz, S. (2010). Geomechanical properties of construction stones quarried in South-western Turkey. Scientific Research and Essays. 5(8), 750–757.
http://www.academicjournals.org/SRE
[34] Yagiz S (2011). Correlation between slake durability and rock properties for some carbonate rocks. Bulletin of Engineering Geology and the Environment. 70, 377–383.
[35] Yagiz, S., Sezer, E. A., & Gokceoglu, C. (2012). Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. International Journal for Numerical and Analytical Methods in Geomechanics. 36(14) 1636-1650. doi.org/10.1002/nag.1066.