[1] Javadi Nooshabadi, A. & Hanumantha Rao, K., (2013). Formation of hydrogen peroxide by pyrite and its influence on flotation. Minerals Engineering, Volume 49, p. 128–134.
[2] Javadi Nooshabadi, A. & Hanumantha Rao, K., (2013). Formation of hydrogen peroxide by chalcopyrite and its influence on flotation. Minerals and Metallurgical Processing, Volume 30(4), p. 212-219.
[3] Javadi Nooshabadi, A. & Hanumantha Rao, K., (2013). Formation of hydrogen peroxide by sphalerite. International Journal of Mineral Processing, Volume 125, p. 78–85.
[4] Javadi Nooshabadi, A. & Hanumantha Rao, K., (2014). Formation of hydrogen peroxide by galena and its influence on flotation. Advanced Powder Technology, Volume 25(3), p. 832-839
[5] Freeman, W., Newell, R. & Quast, K., (2000). Effect of grinding media and NaHS on copper recovery at North Parkes Mines. Minerals Engineering, 13(13), p. 1395–1403.
[6] Orwe, D., Grano, S. & Lauder, D., (1998). Increasing fine copper recovery at the Ok Tedi concentrator, Papua New Guinea. Minerals Engineering, Volume 11(2), p. 171–187.
[7] Houot, R. & Duhamet, D., (1992). The use of sodium sulphite to improve the flotation selectivity between chalcopyrite and galena in complex sulphide ore. Mineral engineering, 5(3-5), pp. 343-355.
[8] Shen, W., Fornasiero, D. & Ralston, J., (2001). Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, Volume 63(1), p. 17-28.
[9] Grano, S., Cnossen H., Skinner W., Prestidge A., Ralston J., (1997). Surface modification in the chalcopyrite–sulfite ion system: II. Dithiophosphate collector adsorption study. Int. J. Miner. Process., Volume 50, p. 27–45.
[10] Grano, S., Prestidge, C. & Ralston, J., (1997). Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption. Int. J. Miner. Process., Volume 52, p. 1–29.
[11] Misra, M., Miller, J. & Song, Q., (1985). The effect of SO2 in the flotation of sphalerite and chalcopyrite. In: K. Forssberg, ed. Flotation of Sulfide Minerals, Developments in Mineral Processing. Amsterdam: Elsevier, p. 175–196.
[12] Yamamoto, T., (1980). Mechanism of pyrite depression by sulphite in the presence of sphalerite. In: M. Jones, ed. In: Complex Sulphide Ores. s.l.:Ed. London, IMM, p. 71-78..
[13] Javadi Nooshabadi, A. & Hanumantha Rao, K., (2016). Complex sulphide ore flotation: Effect of depressants addition during grinding on H2O2 formation and its influence on flotation, International Journal of Mineral Processing, Volume 157, P. 89-97.
[14] Baga, A.N., Johnson G.R.A., Nazhat, N.B., Saadalla-Nazhat, R.A., (1988), A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solutions, Anal. Chim. Acta, 204, 349-353.
[15] Cohn, C., Mueller S., Wimmer E., Leifer N., Greenbaum S., Strongin D.R., Schoonen M.A., (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem. Trans. 7, p. 1.
[16] Ikumapayi, F., Sis, H., Johansson, B. & Hanumantha Rao, K., (2012). Recycling process water in sulphide flotation, Part B: Effect of H2O2 and process water components on sphalerite flotation from complex sulphide. Miner. Metall. Process. Volume 29, p. 192–198.
[17] Owusu, C.; Fornasiero, D.; Addai-Mensah, J.; Zanin, M., (2014). Effect of regrinding and pulp aeration on the flotation of chalcopyrite in chalcopyrite/pyrite mixtures, Powder Technology, Volume 267, p. 61-67.
[18] Hu, Y., Sun, W. & Wang, D., (2009). Electrochemistry of Flotation of Sulphide Minerals. Beijing: Tsinghua University Press,
[19] Smith, B., (1999). Infrared Special Interpretation- A Systematic Approach. In: USA: s.n., p. 67-163.
[20] Socrates, G., (2001). Infrared and Raman Characteristic Group Frequencies - Table. In: J. W. &. Sons, ed. s.l.:Ltd, Chichester, p. 68- 227