[1] Alavi, A. H., Aminian, P., Gandomi, A. H., & Esmaeili, M. A. (2011). Genetic-based modeling of uplift capacity of suction caissons. Expert Systems with Applications, 38(10), 12608-12618.
[2] Anemangely, M., Ramezanzadeh, A., & Tokhmechi, B. (2017). Shear wave travel time estimation from petrophysical logs using ANFIS-PSO algorithm: A case study from Ab-Teymour Oilfield. Journal of Natural Gas Science and Engineering, 38, 373-387.
[3] Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification. Ithaca: Cornell University.
[4] Cao, J., Audibert, J., Al-Khafaji, Z., Phillips, R., & Popescu, R. (2002). Penetration resistance of suction caissons in clay. Paper presented at the The Twelfth International Offshore and Polar Engineering Conference.
[5] Catalão, J. P. d. S., Pousinho, H. M. I., & Mendes, V. M. F. (2010). H. Fattahi & H. Nazari / Int. J. Min. & Geo-Eng. (IJMGE), 54-2 (2020) 109-116 115 Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting. IEEE transactions on power systems, 26(1), 137-144.
[6] Chen, M.-Y. (2013). A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering. Information Sciences, 220, 180-195.
[7] Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of intelligent and Fuzzy systems, 2(3), 267- 278.
[8] Cho, Y., Lee, T., Park, J., Kwag, D., Chung, E., & Bang, S. (2002). Field tests on suction pile installation in sand. Paper presented at the ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering.
[9] Clukey, E., Morrison, M., Gamier, J., & Corté, J. (1995). The response of suction caissons in normally consolidated TLP loading conditions. Paper presented at the Offshore Technology Conference.
[10] Clukey, E. C., & Morrison, M. J. (1993). A centrifuge and analytical study to evaluate suction caissons for TLP applications in the Gulf of Mexico. Paper presented at the Design and performance of deep foundations: Piles and piers in soil and soft rock.
[11] Datta, M., & Kumar, P. (1996). Suction beneath cylindrical anchors in soft clay. Paper presented at the The Sixth International Offshore and Polar Engineering Conference.
[12] Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computational Intelligence Magazine, IEEE, 1(4), 28-39.
[13] Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical computer science, 344(2), 243-278.
[14] Dyvik, R., Andersen, K. H., Hansen, S. B., & Christophersen, H. P. (1993). Field tests of anchors in clay. I: Description. Journal of Geotechnical engineering, 119(10), 1515-1531.
[15] Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Paper presented at the Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium on.
[16] El-Gharbawy, S., & Olson, R. (2000). Modeling of suction caisson foundations. Paper presented at the The Tenth International Offshore and Polar Engineering Conference.
[17] Ghasemi, E., Kalhori, H., & Bagherpour, R. (2016). A new hybrid ANFIS–PSO model for prediction of peak particle velocity due to bench blasting. Engineering with Computers, 32(4), 607-614.
[18] Ghomsheh, V. S., Shoorehdeli, M. A., & Teshnehlab, M. (2007). Training ANFIS structure with modified PSO algorithm. Paper presented at the 2007 Mediterranean Conference on Control & Automation.
[19] Grima, M. A., Bruines, P., & Verhoef, P. (2000). Modeling tunnel boring machine performance by neuro-fuzzy methods. Tunnelling and Underground Space Technology, 15(3), 259-269.
[20] Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. (2018). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications, 30(4), 1015-1024.
[21] Iphar, M., Yavuz, M., & Ak, H. (2008). Prediction of ground vibrations resulting from the blasting operations in an open-pit mine by adaptive neuro-fuzzy inference system. Environmental geology, 56(1), 97-107.
[22] Jang, J.-S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685.
[23] Jiang, H., Kwong, C., Ip, W., & Wong, T. (2012). Modeling customer satisfaction for new product development using a PSObased ANFIS approach. Applied Soft Computing, 12(2), 726-734.
[24] Kaveh, A., Hamze-Ziabari, S., & Bakhshpoori, T. (2018). Feasibility of PSO-ANFIS-PSO and GA-ANFIS-GA models in prediction of peak ground acceleration. International Journal of Optimization in Civil Engineering, 8(1), 1-14.
[25] Larsen, P. (1989). Suction anchors as an anchoring system for floating, offshore constructions. Paper presented at the Offshore Technology Conference.
[26] Lin, C.-J., & Hong, S.-J. (2007). The design of neuro-fuzzy networks using particle swarm optimization and recursive singular value decomposition. Neurocomputing, 71(1-3), 297-310.
[27] Meysam Mousavi, S., Tavakkoli-Moghaddam, R., Vahdani, B., Hashemi, H., & Sanjari, M. (2013). A new support vector modelbased imperialist competitive algorithm for time estimation in new product development projects. Robotics and ComputerIntegrated Manufacturing, 29(1), 157-168.
[28] Oliveira, M. V. d., & Schirru, R. (2009). Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring. Progress in Nuclear Energy, 51(1), 177-183.
[29] Pousinho, H. M. I., Mendes, V. M. F., & Catalão, J. P. d. S. (2011). A hybrid PSO–ANFIS approach for short-term wind power prediction in Portugal. Energy Conversion and Management, 52(1), 397-402.
[30] Pousinho, H. M. I., Mendes, V. M. F., & Catalão, J. P. d. S. (2012). Short-term electricity prices forecasting in a competitive market by a hybrid PSO–ANFIS approach. International Journal of Electrical Power & Energy Systems, 39(1), 29-35.
[31] Rahman, M., Wang, J., Deng, W., & Carter, J. (2001). A neural network model for the uplift capacity of suction caissons. Computers and Geotechnics, 28(4), 269-287.
[32] Rao, S. N., Ravi, R., & Ganapathy, C. (1997). Pullout behavior of model suction anchors in soft marine clays. Paper presented at the The Seventh International Offshore and Polar Engineering Conference.
[33] Sezer, E. A., Nefeslioglu, H. A., & Gokceoglu, C. (2014). An assessment on producing synthetic samples by fuzzy C-means for limited number of data in prediction models. Applied Soft Computing, 24, 126-134.
[34] Shahlaei, M., Madadkar-Sobhani, A., Saghaie, L., & Fassihi, A. (2012). Application of an expert system based on Genetic Algorithm–Adaptive Neuro-Fuzzy Inference System (GA– ANFIS) in QSAR of cathepsin K inhibitors. Expert Systems with Applications, 39(6), 6182-6191.
[35] Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. Paper presented at the Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence.
[36] Shoorehdeli, M. A., Teshnehlab, M., & Sedigh, A. (2006). A novel training algorithm in ANFIS structure. Paper presented at the 2006 American Control Conference.
[37] Üstün, B., Melssen, W., Oudenhuijzen, M., & Buydens, L. (2005). Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 544(1), 292-305.
[38] Ustun, S. V., & Demirtas, M. (2009). Modeling and control of V/f 116 H. Fattahi & H. Nazari / Int. J. Min. & Geo-Eng. (IJMGE), 54-2 (2020) 109-116 controlled induction motor using genetic-ANFIS algorithm. Energy Conversion and Management, 50(3), 786-791.
[39] Weiling, C., & Lee, J. (1995). Fuzzy Logic for the Applications to Complex Systems. Paper presented at the Proceedings of the International Joint Conference of CFSA/IFIS/SOFT on Fuzzy Theory and Applications. Singapore et al.: World Scientific.
[40] Whittle, A. J., & Kavvadas, M. J. (1994). Formulation of MIT-E3 constitutive model for overconsolidated clays. Journal of Geotechnical engineering, 120(1), 173-198.
[41] Yilmaz, I., & Yuksek, G. (2009). Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. International Journal of Rock Mechanics and Mining Sciences, 46(4), 803-810.
[42] Zdravković, L., Potts, D., & Jardine, R. (2001). A parametric study of the pull-out capacity of bucket foundations in soft clay. Geotechnique, 51(1), 55-67.
[43] Zeng, D. H., Liu, Y., Jiang, L. B., Li, L., & Xu, G. (2012). A New Approach to Cutting Temperature Prediction Using Support Vector Regression and Ant Colony Optimization. Paper presented at the Advanced Engineering Forum.