[1] Avseth, P., Mukerji, T., & Mavko, G. (2010). Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Sixth Edition, Cambridge university press, 356p.
[2] Lumley, D. E. (2001). Time-lapse seismic reservoir monitoring. Geophysics, 66 (1), 50-53.
[3] Hu, X., Hu, S., Jin, F., & Huang, S. (Eds.). (2017). Physics of petroleum reservoirs. Springer.
[4] Wang, Z., Wang, R., Schmitt D.R., Zhou, Y., Wang, F., (2017). Carbonate rock physics modelling at ultrasonic and seismic frequencies. 4th International Workshop on Rock Physics, Trondheim, Norway.
[5] Zhao, L., Nasser, M., & Han, D. H. (2013). Quantitative geophysical pore-type characterization and its geological implication in carbonate reservoirs. Geophysical Prospecting, 61 (4), 827-841.
[6] Ghon, G., Rankey, E. C., Baechle, G. T., Schlaich, M., Ali, S. H., Mokhtar, S., & Poppelreiter, M. C. (2018, June). Carbonate Reservoir Characterisation of an Isolated Platform Integrating Sequence Stratigraphy and Rock Physics in Centr. In 80th EAGE Conference and Exhibition 2018.
[7] Li, H., & Zhang, J. (2018). Well log and seismic data analysis for complex pore-structure carbonate reservoir using 3D rock physics templates. Journal of Applied Geophysics, 151, 175-183.
[8] Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook: Tools for seismic analysis of porous media. Second Edition, Cambridge university press,511p.
[9] Xu, S., & White, R. E. (1995). A new velocity model for clay‐sand mixtures 1. Geophysical prospecting, 43 (1), 91-118.
[10] Xu, S., & Payne, M. A. (2009). Modeling elastic properties in carbonate rocks. The Leading Edge, 28 (1), 66-74.
[11] Nishizawa, O. (1982). Seismic velocity anisotropy in a medium containing oriented cracks. Journal of Physics of the Earth, 30 (4), 331-347.
[12] Berryman, J. G. (1980). Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions. The Journal of the Acoustical Society of America, 68 (6), 1820-1831.
[13] Eberli, G. P., Baechle, G. T., Anselmetti, F. S., & Incze, M. L. (2003). Factors controlling elastic properties in carbonate sediments and rocks. The Leading Edge, 22 (7), 654-660.
[14] Bashah, N. S. I., & Pierson, B. J. (2011, January). Quantification of pore structure in a miocene carbonate build-up of Central Luconia, sarawak and its relationship to sonic velocity. In International Petroleum Technology Conference. International Petroleum Technology Conference, Thailand.
[15] Lubis, L. A., & Harith, Z. Z. T. (2014). Pore type classification on carbonate reservoir in offshore Sarawak using rock physics model and rock digital images. In IOP Conference Series: Earth and Environmental Science (Vol. 19, No. 1, p. 012003). IOP Publishing.
[16] Hall, D., & Llinas, J. (2001). Multisensor data fusion. CRC press LLC.
[17] Abdulaheem, A., Sabakhy, E., Ahmed, M., Vantala, A., Raharja, P. D., & Korvin, G., (2007). Estimation of permeability from wireline logs in a middle eastern carbonate reservoir using fuzzy logic. In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers
[18] Cuddy, S. J., (2000). Litho-facies and permeability prediction from 108 H. Seifi et al. / Int. J. Min. & Geo-Eng. (IJMGE), 54-2 (2020) 101-108 electrical logs using fuzzy logic. SPE Reservoir Evaluation & Engineering, 3 (04), 319-324.
[19] Valet, L., Mauris, G., Bolon, P., & Keskes, N., (2001). Seismic image segmentation by fuzzy fusion of attributes. IEEE Transactions on Instrumentation and Measurement, 50 (4), 1014-1018.
[20] Guo, H. X., Zhu, K. J., Gao, S. W., Li, Y., & Zhou, J. J., (2009). Extracting fuzzy rules based on fusion of soft computing in oil exploration management. Expert Systems with Applications, 36 (2), 2081-2087.
[21] Ziyong, Z., Hangyu, Y., & Xiaodan, G., (2017). Fuzzy fusion of geological and geophysical data for mapping hydrocarbon potential based on GIS. Petroleum Geoscience, petgeo2016-100.
[22] Hajian, A., & Styles, P., (2018). Applications of Fuzzy Logic in Geophysics. In Application of Soft Computing and Intelligent Methods in Geophysics (pp. 301-371). Springer, Cham.
[23] Zimmerman, R. W. (1990). Compressibility of sandstones (Vol. 29). Elsevier,183p.
[24] Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13 (4), 213-222.
[25] Berryman, J. G. (1995). Mixture theories for rock properties. Rock physics and phase relations: A handbook of physical constants, American Geophysical Union, 3, 205-228.
[26] Misaghi, A., Negahban, S., Landrø, M., & Javaherian, A. (2010). A comparison of rock physics models for fluid substitution in carbonate rocks. Exploration Geophysics, 41 (2), 146-154.
[27] Berryman, J. G. (2007). Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies. Geophysics, 73 (1), D1-D10.
[28] Budiansky, B. (1965). On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13 (4), 223-227.
[29] Gassmann, F., Maggiorini, M., Städler, E., & Winkler, W. (1951). Verteljahrsschrift der Naturforschenden Gesellschaft in Zurich. Uber die elastizitat poroser medien, 96, 1-23.
[30] Schön, J. H. (2015). Physical properties of rocks: Fundamentals and principles of petrophysics (Vol. 65). Elsevier.
[31] Kuncheva, L. I. (2004). Combining pattern classifiers: methods and algorithms. John Wiley & Sons,350p.
[32] Torra, V., & Narukawa, Y. (2006). The interpretation of fuzzy integrals and their application to fuzzy systems. International Journal of Approximate Reasoning, 41 (1), 43-58.
[33] Yager, R. R. (2002). On the cardinality index and attitudinal character of fuzzy measures. International Journal of General Systems, 31 (3), 303-329.
[34] Ayub, M., (2009). Choquet and Sugeno Integrals. MSc. Thesis, Blekinge Institute of Technology, Sweden, 80p.