[1]. Lang, L., & Fu-Bao, Z. (2010). A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. International Journal of Coal Geology, 82(1-2), 27-36.
[2]. Thakur, P., Schatzel, S., & Aminian, K. (Eds.). (2014). Coal bed methane: From prospect to pipeline. Elsevier. 420 P.
[3]. Carras, J. N., & Young, B. C. (1994). Self-heating of coal and related materials: models, application and test methods. Progress in Energy and Combustion Science, 20(1), 1-15.
[4]. Beamish, B. B., Barakat, M. A., & George, J. D. S. (2001). Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions. International Journal of Coal Geology, 45(2-3), 217-224.
[5]. Beamish, B. B., & Blazak, D. G. (2005). Relationship between ash content and R70 self-heating rate of Callide coal. International Journal of Coal Geology, 64(1-2), 126-132.
[6]. Singh, A. K., Singh, R. V. K., Singh, M. P., Chandra, H., & Shukla, N. K. (2007). Mine fire gas indices and their application to Indian underground coal mine fires. International Journal of Coal Geology, 69(3), 192-204.
[7]. Xue, S., Wang, J., Xie, J., & Wu, J. (2010). A laboratory study on the temperature dependence of the radon concentration in coal. International Journal of Coal Geology, 83(1), 82-84.
[8]. Song, Z., & Kuenzer, C. (2014). Coal fires in China over the last decade: a comprehensive review. International Journal of Coal Geology, 133, 72-99.
[9]. Finkelman, R. B. (2004). Potential health impacts of burning coal beds and waste banks. International Journal of Coal Geology, 59(1-2), 19-24.
[10]. Beamish, B. B. (2005). Comparison of the R70 self-heating rate of New Zealand and Australian coals to Suggate rank parameter. International Journal of Coal Geology, 64(1-2), 139-144.
[11]. Dijk, P.V., Zhang, J., Jun, W., Kuenzer, C., & Wolf, K. H. (2011). Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates. International Journal of Coal Geology, 86(1), 108-119.
[12]. Beamish, B. B., & Hamilton, G. R. (2005). Effect of moisture content on the R70 self-heating rate of Callide coal. International Journal of Coal Geology, 64(1-2), 133-138.
[13]. Saffari, A., Sereshki, F., Ataei, M., & Ghanbari, K. (2013). Applying rock engineering systems (RES) approach to evaluate and classify the coal spontaneous combustion potential in Eastern Alborz coal mines. Int. Journal of Mining & Geo-Engineering, 47(2), 115- 127.
[14]. Saffari, A., Sereshki, F., Ataei, M., & Ghanbari, K. (2017). Presenting an engineering classification system for coal spontaneous combustion potential. International Journal of Coal Science & Technology, 4(2), 110-128.
[15]. Akgün, F., & Arisoy, A. (1994). Effect of particle size on the spontaneous heating of a coal stockpile. Combustion and Flame, 99(1), 137-146.
[16]. Ren, T. X., Edwards, J. S., & Clarke, D. (1999). Adiabatic oxidation study on the propensity of pulverised coals to spontaneous combustion. Fuel, 78(14), 1611-1620.
[17]. Nugroho, Y. S., McIntosh, A., & Gibbs, B. M. (2000). Lowtemperature oxidation of single and blended coals. Fuel, 79(15), 1951-1961.
[18]. Wang, H., Dlugogorski, B. Z., & Kennedy, E. M. (2003). Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science, 29(6), 487-513.
[19]. Beamish, B. B., & Arisoy, A. (2008). Effect of mineral matter on coal self-heating rate. Fuel, 87(1), 125-130.
[20]. Banerjee, S.C. (1985). Spontaneous Combustion of Coal and Mine Fires, Dhanbad-India: Central Mining Research Station. Oxford & IBH Publishing Co. Balkema. Rotterdam. 168 P.
[21]. Chandra, D., & Prasad, Y. V. S. (1990). Effect of coalification on spontaneous combustion of coals. International Journal of Coal Geology, 16(1-3), 225-229.
[22]. Pone, J. D. N., Hein, K. A. A., Stracher, G. B., Annegarn, H. J., Finkleman, R. B., Blake, D. R., McCormack, J. K., & Schroeder, P. (2007). The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology, 72(2), 124-140.
[23]. Mohalik, N., Singh, R., Singh, V. and Tripathi, D. (2009). Critical Appraisal to Assess the Extent of Fire in Old Abandoned Coal Mine Areas- Indian Context. Coal Operators' Conference. University of Wollongong. Australia. pp. 271-280.
[24]. Misz-Kennan, M., & FabiaĆska, M. (2010). Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). International Journal of Coal Geology, 81(4), 343-358.
[25]. Yuan, L., & Smith, A. C. (2012). The effect of ventilation on spontaneous heating of coal. Journal of Loss Prevention in the Process Industries, 25(1), 131-137.
[26]. Kuenzer, C., Zhang, J., Tetzlaff, A., Van Dijk, P., Voigt, S., Mehl, H., & Wagner, W. (2007 a). Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Applied Geography, 27(1), 42-62.
[27]. Kuenzer, C., & Stracher, G. B. (2012). Geomorphology of coal seam fires. Geomorphology, 138(1), 209-222.
[28]. Liang, Y., Liang, H., & Zhu, S. (2014). Mercury emission from coal seam fire at Wuda, Inner Mongolia, China. Atmospheric environment, 83, 176-184.
[29]. Xi, Z., Guo, X., & Liew, J. R. (2018). Investigation of thermoplastic powder synergizing polymorphic foam to inhibit coal oxidation at low temperature. Fuel, 226, 490-497.
[30]. Kaymakci, E., & Didari, V. (2001). Relations between coal properties and spontaneous combustion parameters. Turkish Journal of Engineering and Environmental Sciences, 26(1), 59-64.
[31]. Stracher, G. B., & Taylor, T. P. (2004). Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe. International Journal of Coal Geology, 59(1-2), 7-17.
[32]. Stracher, G., Taylor, T., Nolter, M., Vice, D., Blake, D., & A. Saffari et al. / Int. J. Min. & Geo-Eng. (IJMGE), 54-2 (2020) 93-99 99 Cerpovicz, P. (2004). Centralia mine fire collecting extravaganza with National Geographic. In Paper Presented at the Geological Society of America, Denver, USA, November 7–10. Paper 15-4.
[33]. Smith, M. A., & Glasser, D. (2005a). Spontaneous combustion of carbonaceous stockpiles. Part I: the relative importance of various intrinsic coal properties and properties of the reaction system. Fuel, 84(9), 1151-1160.
[34]. Smith, M. A., & Glasser, D. (2005b). Spontaneous combustion of carbonaceous stockpiles. Part II. Factors affecting the rate of the low-temperature oxidation reaction. Fuel, 84(9), 1161-1170.
[35]. Chatterjee, R. S. (2006). Coal fire mapping from satellite thermal IR data–A case example in Jharia Coalfield, Jharkhand, India. ISPRS Journal of Photogrammetry and Remote Sensing, 60(2), 113-128.
[36]. Kuenzer, C., Wessling, S., Zhang, J., Litschke, T., Schmidt, M., Schulz, J., Gielisch, H., & Wagner, W. (2007 b). Concepts for greenhouse gas emission estimating of underground coal seam fires. Geophysical Research Abstracts (Vol. 9, p. 11716).
[37]. Cotterell, M. E. (1997). The effect of coal maceral composition on spontaneous combustion. BE thesis (unpublished), University of Queensland.
[38]. Humphreys, M. A. (1979). The variation of comfortable temperatures. International Journal of Energy Research, 3(1), 13- 18.
[39]. Arisoy, A. (2010). Coal mine safety and preventing selfcombustion of coal. In Conference: Inerma, at Istanbul, Turkey.
[40]. Van Krevelen, D. W. (1961). Coal. Elsevier, Amsterdam.
[41]. Falcon, R. M. S. (1986). Classification of coals in Southern Africa. In: Anhaeusser, C.R.,Maske, S. (Eds.),Mineral Deposits of Southern Africa, vols. I and II. Geological Society of South Africa, Johannesburg, pp. 1879-1898.
[42]. Falcon, R. M. S., & Snyman, C. P. (1986). An introduction to coal petrography: atlas of petrographic constituents in the bituminous coals of Southern Africa. Geological Society of South Africa.
[43]. Van Krevelen, D. W. (1993). Coal: Typology–Physics–Chemistry– Constitution (Coal Science & Technology). Elsevier Science, Amsterdam.
[44]. Chaudhuri, S. N. (2016). Coal Macerals. In: Tiess G., Majumder T., Cameron P. (eds) Encyclopedia of Mineral and Energy Policy. Springer, Berlin, Heidelberg.
[45]. Stach, E. (1982). Stach's textbook of coal petrology. 3rd ed. Gebr.Borntrager, Berlin/Stuttgart. 535 P. [46]. Sengupta, S. (2013). Coal geology and its application in industrial use, 1st edn. Srinivas Press, India.
[47]. Xuyao, Q., Wang, D., Milke, J. A., & Zhong, X. (2011). Crossing point temperature of coal. Mining science and technology (China), 21(2), 255-260.
[48]. Zhang, Y., Wang, J., Xue, S., Wu, J., Chang, L., & Li, Z. (2016). Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR. International Journal of Coal Geology, 154, 155-164.
[49]. Beamish, B. B., Barakat, M. A., & St George, J. D. (2000). Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects. Thermochimica Acta, 362(1-2), 79-87.
[50]. Arisoy, A., & Beamish, B. (2015). Mutual effects of pyrite and moisture on coal self-heating rates and reaction rate data for pyrite oxidation. Fuel, 139, 107-114.