[1]. Kogel, J.E., Trivedi, N.C., Barker, J.M. & Krukowski, S.T. (2006). Industrial minerals & rocks: commodities, markets, and uses. SME, Colorado, USA, 637-652.
[2]. Browning, J.S. & Adair, R.B. (1966). Selective flotation of mica from Georgia pegmatites. US Dept. of the Interior, Bureau of Mines, 6830.
[3]. Norman, J.E. & O'meara, R. (1941). Froth flotation and agglomerate tabling of micas. US Dept. of the Interior, Bureau of Mines. 3558.
[4]. Arocena, J. & Velde, B. (2009). Transformation of chlorites by primary biological agents-a synthesis of X-ray diffraction studies. Geomicrobiology Journal, 26(6), 382-388.
[5]. Kalinowski, B.E. & Schweda, P. (1996). Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochimica et Cosmochimica Acta, 60(3), 367-385.
[6]. Taylor, A.S., Blum, J.D., Lasaga, A.C. & MacInnis, I.N. (2000). Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochimica et Cosmochimica Acta, 64(7), 1191-1208.
[7]. Nagy, K. (1995). Dissolution and precipitation kinetics of sheet silicates. Reviews in Mineralogy and Geochemistry, 31(1), 173-233.
[8]. Bulatovic, S.M. (2007). Handbook of flotation reagents: chemistry, theory and practice, 3, Elsevier.
[9]. Kuzvart, M. (2013). Industrial minerals and rocks. Elsevier, Amsterdam, Holand, 222-228.
[10]. Santos, S.F., França, S.C.A. & Ogasawara, T. (2011). Method for grinding and delaminating muscovite. Mining Science and Technology, 21(1), 7-10.
[11]. Gulsoy, O. & Kademli, M. (2006). Effects of operational parameters of spiral concentrator on mica-feldspar separation. Mineral Processing and Extractive Metallurgy, 115(2), 80-84.
[12]. Kademli, M. & Gulsoy, O.Y. (2012). The role of particle size and solid contents of feed on mica-feldspar separation in gravity concentration. Physicochemical Problems of Mineral Processing, 48(2), 645-654.
[13]. França, S.C.A., Santos, S.F. & Ogasawara, T. (2008). Alternative route to muscovite mica dressing, in IX Argentine Conference on Mineral Processing. San Juan, Argentina.
[14]. Gershenkop, A.S. & Khokhulya, M. (2004). Physical separation (gravity and shape) of small-sized mica ore. European Journal of Mineral Processing & Environmental Protection, 4(3), 253-259.
[15]. Burt, R. (2013). A review of gravity concentration techniques for processing fines. in Production and Processing of Fine Particles: Proceedings of the International Symposium on the Production and Processing of Fine Particles, Montreal, Canada, 375-386.
[16]. Mular, A.L., Halbe, D.N. & Barratt, D.J. (2002). Mineral processing plant design, practice, and control. SME, Colorado USA, 1162-1164.
[17]. Zhongyin, S.L.L. (2008). Discussion on Present Studying Situation and Developing Trend of Gravity Concentration Equipment. Express Information of Mining Industry, 6, 001.
[18]. Kelina, I.M., Tsypin, Y.F. & Aleksandrova, Y.P. (1983). About factor of friction of mineral benefication of mica slates on the shelved separator. Izvestiya Vysshikh Uchebnykh Zavedenii, 4, 126-129.
[19]. Lee, P.K., Touray, J.C., Baillif, P., Ildefonse, J.P. (1997). Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France. Science of the Total Environment, 201(1), 1-15.
[20]. Legret, M. & Colandini, V. (1999). Effects of a porous pavement with reservoir structure on runoff water: water quality and fate of heavy metals. Water Science and Technology, 39(2), 111-117.
[21]. Zanders, J. (2005). Road sediment: characterization and implications for the performance of vegetated strips for treating road run-off. Science of the Total Environment, 339(1), 41-47.
[22]. Durand, C. (2003). Physico‐chemical characterisation of stormwater sediments: Origin and fate of trace metals and organic pollutants. PhD thesis, University of Poitiers (in French).
[23]. Clozel, B., Ruban, V., Durand, C., Conil, P. (2006). Chemical and mineralogical assessment of the origin and mobility of heavy metals (Cd, Zn, Pb, Cu, Ni, Cr) in contaminated sediments from retention and infiltration ponds. Appl. Geochem, 21, 1781-1798.
[24]. Sharp, K. (1993). Selective soft self attrition gold dissolution. Provisional Patent Application NR: 93/9645, 34.
[25]. Bayley, R. & Biggs C. (2005). Characterisation of an attrition scrubber for the removal of high molecular weight contaminants in sand. Chemical Engineering Journal, 111(1), 71-79.
[26]. Pryor, M. (2012). Mineral processing. Springer Science & Business Media, Netherland.
[27]. Parekh, B. & Miller, J. (1999). Advances in flotation technology. SME, Colorado USA, 245-256.
[28]. Sekulić, Ž., Canić, N., Bartulović, Z. & Daković, A. (2004). Application of different collectors in the flotation concentration of feldspar, mica and quartz sand. Minerals Engineering, 17(1), 77-80.
[29]. Mackintosh, E. & Lewis, D. (1968). Displacement of potassium from micas by dodecylammonium chloride. Int Soc Soil Sci Trans, 2, 695-703.
[30]. Bhappu, B. (1964). Recovery of Valuable Minerals f rom Pegmatite Ores. New Mex. Bureau of Mines, Min. Resources. Circ., 70, 1-29.
[31]. Jinni, H.G.F. & Yipeng, M.M.W. (2013). Application of Combined Collectors in Flotation of Lepidolite. Non-Metallic Mines, 4, 009.
[32]. Beausoleil, N., Lavallée, P., Yelon, A., Ballet, O., Coey, J.M.D. (1983). Magnetic properties of biotite micas. Journal of Applied Physics, 54(2), 906-915.
[33]. Parkhomenko, E.I. (2012). Electrical Properties of Rocks. Springer US.
[34]. Mehdilo, A., Irannajad, M., Zarei, H. (2014). Smithsonite Flotation from Zinc Oxide Ore using Alkyl Amine Acetate Collectors. Separation Science and Technology, 49(3), 445-457.
[35]. Raesisi, A. & Amini, A. (1990). Mica Enrichment of Gharabagh Deposite. Geological Survey of Iran.
[36]. Ipekoglu, B. & Asmatulu, R. (1996). The recovery studies of pure mica for paint industry. in 6th international symposium of Mineral Processing. Kusadasi, Turkey: CRC Press.
[37]. Schoeman, J. (1989). Mica and vermiculite in South Africa. Journal of the South African Institute of Mining and Metallurgy, 1-12.
[38]. Iverson, H. (1932). Separation of feldspar from quartz. Engineering and Mining Journal, 133, 227-229.
[39]. Adair, R., McDaniel, W., Hudspeth, W. (1951). New method for recovery of flake mica. Mining Engineering, 3, 252-254.
[40]. Wills, B.A. (2011). Wills' Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science.
[41]. Kelly, E.G. & Spottiswood, D.J. (1982). Introduction to mineral processing. Wiley.
[42]. Wang, L., Sun, W., Liu, R. (2014). Mechanism of separating muscovite and quartz by flotation. Journal of Central South University, 21, 3596-3602.
[43]. Xu, L., Wu, H., Dong, F., Wang, L., Wang, Z., Xiao, J. (2013). Flotation and adsorption of mixed cationic/anionic collectors on muscovite mica. Minerals Engineering, 41, 41-45.
[44]. Marion, C., Jordens, A., McCarthy, S., Grammatikopoulos, T., Waters, K.E. (2015). An investigation into the flotation of muscovite with an amine collector and calcium lignin sulfonate depressant. Separation and Purification Technology.
[45]. Stražišar, J. & Sešelj, A. (1999). Attrition as a process of comminution and separation. Powder Technology, 105(1), 205-209.
[46]. Feng, D., Lorenzen, L., Aldrich, C. & Mare, P.W. (2001). Ex situ diesel contaminated soil washing with mechanical methods. Minerals Engineering, 14(9), 1093-1100.
[47]. Stegmann, R., Brunner, G., Calmano, W. & Matz, G. (2013). Treatment of contaminated soil: fundamentals, analysis, applications. Springer Science & Business Media.