[1] Beiranvndpour, A., & Hashim, M. (2011). Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309–1323. http://doi.org/10.1016/j.jseaes.2011.07.017
[2] Beiranvandpour, A., & Hashim, M. (2012a). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran. Advances in Space Research, 49(4), 753–769. http://doi.org/10.1016/j.asr.2011.11.028
[3] Beiranvandpour, A., & Hashim, M. (2012b). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9. http://doi.org/10.1016/j.oregeorev.2011.09.009
[4] Zoheir, B., & Emam, A. (2012). Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt. Journal of African Earth Sciences, 66-67, 22–34. http://doi.org/10.1016/j.jafrearsci.2012.02.007
[5] Amer, R., Kusky, T., & El Mezayen, A. (2012). Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research, 49(1), 121–134. http://doi.org/10.1016/j.asr. 2011.09.024
[6] Cheng, Q., & Li, Q. (2002). A fractal concentration-area method for assigning a color palette for image representation. Computers and Geosciences, 28(4), 567–575. http://doi.org/10.1016/S0098-3004(01)00060-7
[7] Liu, J.-G., & Mason, P. J. (2009). Essential Image Processing and GIS for remote sensing.
[8] Mandelbrot, B. B. (1982). The fractal geometry of nature. New York: Freeman.
[9] Mandelbrot, B. B. (1983). The fractal geometry of nature (updated and augmented). New York: Freeman.
[10] Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130. http://doi.org/10.1016/0375-6742(94)90013-2
[11] Zuo, R., Cheng, Q., & Xia, Q. (2009). Application of fractal models to characterization of vertical distribution of geochemical element concentration. Journal of Geochemical Exploration, 102(1), 37–43. http://doi.org/10.1016/j.gexplo.2008.11.020
[12] Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N. R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108(3), 220–232. http://doi.org/10.1016/j.gexplo.2011.03.005
[13] Afzal, P., Alghalandis, Y. F., Moarefvand, P., Omran, N. R., & Haroni, H. A. (2012). Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. Journal of Geochemical Exploration, 112, 131–138. http://doi.org/10.1016/j.gexplo.2011.08.002
[14] Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., & Alghalandis, Y. F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1-2), 34–46. http://doi.org/10.1016/j.gexplo.2009.11.003
[15] Agterberg, F. P., Cheng, Q., Brown, a., & Good, D. (1996). Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Computers and Geosciences, 22(5), 497–507. http://doi.org/10.1016/0098-3004(95)00117-4
[16] Sim, B. L., Agterberg, F. P., & Beaudry, C. (1999). Determining the cutoff between background and relative base metal smelter contamination levels using multifractal methods. Computers and Geosciences, 25, 1023–1041. http://doi.org/10.1016/S0098-3004(99)00064-3
[17] Hassanpour, S., & Afzal, P. (2013). Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6(3), 957–970. http://doi.org/10.1007/s12517-011-0396-2.
[18] Shahriari, H., Ranjbar, H., & Honarmand, M. (2013). Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration–Area Fractal Model. Natural Resources Research, 22(3), 191–206. http://doi.org/10.1007/s11053-013-9211-y
[19] Aramesh Asl, R., Afzal, P., Adib, A., & Yasrebi, A. B. (2014). Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+ multispectral data. Arabian Journal of Geosciences, 8(5), 2997–3006. http://doi.org/10.1007/s12517-014-1366-2
[20] Berberian, F., Muir, I. D., Pankhurst, R. J., & Berberian, M. (1982). Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5), 605–614. http://doi.org/10.1144/gsjgs.139.5.0605
[21] Mobasher, K., & Babaie, H. A. (2008). Kinematic significance of fold- and fault-related fracture systems in the Zagros mountains, southern Iran. Tectonophysics, 451(1-4), 156–169. http://doi.org/10.1016/j.tecto.2007.11.060
[22] Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran: Reply. Canadian Journal of Earth Sciences, 18(11), 1764–1766. http://doi.org/10.1139/e81-163
[23] Shahabpour, J. (1994). Post-mineralization breccia dike from the Sar Cheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining Geology, 3(1). Retrieved from http://emg.geoscienceworld.org/cgi/content/long/3/1/39
[24] Dargahi, S., Arvin, M., Pan, Y., & Babaei, A. (2010). Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian–Eurasian continental collision. Lithos, 115(1-4), 190–204. http://doi.org/10.1016/j.lithos.2009.12.002
[25] Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., & Babaei, A. (2007). Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences, 30(3-4), 474–489. http://doi.org/10.1016/j.jseaes.2007.01.001
[26] Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., & Jolivet, L. (2008). Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106(3-4), 380–398. http://doi.org/10.1016/j.lithos.2008.09.008
[27] Caillat, C., Dehlavi, P., Jantin, B.-M., Nogol Sadat, A., Hushmandzadeh, A., Behruzi, A., Lotfi, M., Nazer, N. K., and Mahdavi, M. (1984). Geological map of Saveh 1:250,000 sheet. Geological Survey of Iran, Tehran.
[28] Abrams, M., & Hook, S. (2002). ASTER User Handbook Version 2. Jet Propulsion Laboratory, 135. Retrieved from Abrams2002NASA.pdf
[29] Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366. http://doi.org/10.1016/S0034-4257(02)00127-X
[30] Rowan, L. C., Schmidt, R. G., & Mars, J. C. (2006). Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104(1), 74–87. http://doi.org/10.1016/j.rse.2006.05.014
[31] Moore, F., Rastmanesh, F., Asadi, H., & Modabberi, S. (2008). Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data. International Journal of Remote Sensing, 29(10), 2851–2867. http://doi.org/10.1080/01431160701418989
[32] Tangestani, M. H., Mazhari, N., Agar, B., & Moore, F. (2008). Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran. International Journal of Remote Sensing, 29(10), 2833–2850. http://doi.org/10.1080/01431160701422239
[33] Carranza, E. J. M., van Ruitenbeek, F. J. a., Hecker, C., van der Meijde, M., & van der Meer, F. D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374–387. http://doi.org/10.1016/j.jag.2008.02.008
[34] Honarmand, M., Ranjbar, H., & Shahabpour, J. (2012). Application of Principal Component Analysis and Spectral Angle Mapper in the Mapping of Hydrothermal Alteration in the Jebal-Barez Area, Southeastern Iran. Resource Geology, 62(2), 119–139. http://doi.org/10.1111/j.1751-3928.2012.00184.x
[35] Crósta, a. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240. http://doi.org/10.1080/0143116031000152291
[36] Loughlin, W. P. (1991). Principal Component Analysis for mineral alteration mapping. Photogrammetric Engineering and Remote Sensing, (April 1985).
[37] Chavez P.S, J., & Kwarteng, A. Y. (1989). Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogrammetric Engineering and Remote Sensing, 55(3), 339–348. Retrieved from https://pubs.er.usgs.gov/publication/70015931
[38] Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161. http://doi.org/10.1130/GES00044.1
[39] Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513. http://doi.org/10.1190/1.1440721
[40] Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74, 1613–1629. http://doi.org/10.2113/gsecongeo.74.7.1613
[41] Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175–194. http://doi.org/10.1016/S0375-6742(99)00028-X
[42] Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9(1), 43–52. Retrieved from http://springerlink.metapress.com/openurl.asp?genre=article&id=doi:10.1023/A:1010109829861
[43] Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V., & Calvin, W. M. (1993). The U. S. Geological Survey, Digital Spectral Library, 1, 0.2 to 3.0 micrometers. U.S. Geological Survey Open File Report 93-592.
[44] Alavi, M. (1994). Tectonics of the zagros orogenic belt of iran: new data and interpretations. Tectonophysics, 229(3-4), 211–238.
[45] Farahbakhsh, E., Shirmard, H., Bahroudi, A., & Eslamkish, T. (2015). Fusing ASTER and QuickBird-2 Satellite Data for Detailed Investigation of Porphyry Copper Deposits Using PCA; Case Study of Naysian Deposit, Iran. Journal of the Indian Society of Remote Sensing. http://doi.org/10.1007/s12524-015-0516-7