Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data

Document Type: Research Paper

Authors

1 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

3 1- Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran. 2- Camborne School of Mines, University of Exeter, Penryn, UK.

Abstract

The aim of this study is determination and separation of alteration zones using Concentration-Area (C-A) fractal model based on remote sensing data which has been extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. The studied area is on the SW part of Saveh, 1:250,000 geological map, which is located in Urumieh-Dokhtar magmatic belt, Central Iran. The pixel values were computed by Principal Component Analysis (PCA) method used to determine phyllic, argillic, and propylitic alteration zones. The C-A fractal model is utilized for separation of different parts of alteration zones due to their intensity. The log-log C-A plots reveal multifractal nature for phyllic, argillic, and propylitic alteration zones. The obtained results based on fractal model show that the main trend of the alteration zones is in NW-SE direction. Compared to the geological map of the study area and copper mineralizations, the alteration zones have been detected properly and correlate with the mineral occurrences, intrusive rock, and faults.

Keywords


[1] Beiranvndpour, A., & Hashim, M. (2011). Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309–1323. http://doi.org/10.1016/j.jseaes.2011.07.017
[2] Beiranvandpour, A., & Hashim, M. (2012a). Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran. Advances in Space Research, 49(4), 753–769. http://doi.org/10.1016/j.asr.2011.11.028
[3] Beiranvandpour, A., & Hashim, M. (2012b). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9. http://doi.org/10.1016/j.oregeorev.2011.09.009
[4] Zoheir, B., & Emam, A. (2012). Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt. Journal of African Earth Sciences, 66-67, 22–34. http://doi.org/10.1016/j.jafrearsci.2012.02.007
[5] Amer, R., Kusky, T., & El Mezayen, A. (2012). Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research, 49(1), 121–134. http://doi.org/10.1016/j.asr. 2011.09.024
[6] Cheng, Q., & Li, Q. (2002). A fractal concentration-area method for assigning a color palette for image representation. Computers and Geosciences, 28(4), 567–575. http://doi.org/10.1016/S0098-3004(01)00060-7
[7] Liu, J.-G., & Mason, P. J. (2009). Essential Image Processing and GIS for remote sensing.
[8] Mandelbrot, B. B. (1982). The fractal geometry of nature. New York: Freeman.
[9] Mandelbrot, B. B. (1983). The fractal geometry of nature (updated and augmented). New York: Freeman.
[10] Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109–130. http://doi.org/10.1016/0375-6742(94)90013-2
[11] Zuo, R., Cheng, Q., & Xia, Q. (2009). Application of fractal models to characterization of vertical distribution of geochemical element concentration. Journal of Geochemical Exploration, 102(1), 37–43. http://doi.org/10.1016/j.gexplo.2008.11.020
[12] Afzal, P., Alghalandis, Y. F., Khakzad, A., Moarefvand, P., & Omran, N. R. (2011). Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. Journal of Geochemical Exploration, 108(3), 220–232. http://doi.org/10.1016/j.gexplo.2011.03.005
[13] Afzal, P., Alghalandis, Y. F., Moarefvand, P., Omran, N. R., & Haroni, H. A. (2012). Application of power-spectrum–volume fractal method for detecting hypogene, supergene enrichment, leached and barren zones in Kahang Cu porphyry deposit, Central Iran. Journal of Geochemical Exploration, 112, 131–138. http://doi.org/10.1016/j.gexplo.2011.08.002
[14] Afzal, P., Khakzad, A., Moarefvand, P., Omran, N. R., Esfandiari, B., & Alghalandis, Y. F. (2010). Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. Journal of Geochemical Exploration, 104(1-2), 34–46. http://doi.org/10.1016/j.gexplo.2009.11.003
[15] Agterberg, F. P., Cheng, Q., Brown, a., & Good, D. (1996). Multifractal modeling of fractures in the Lac du Bonnet Batholith, Manitoba. Computers and Geosciences, 22(5), 497–507. http://doi.org/10.1016/0098-3004(95)00117-4
[16] Sim, B. L., Agterberg, F. P., & Beaudry, C. (1999). Determining the cutoff between background and relative base metal smelter contamination levels using multifractal methods. Computers and Geosciences, 25, 1023–1041. http://doi.org/10.1016/S0098-3004(99)00064-3
[17] Hassanpour, S., & Afzal, P. (2013). Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6(3), 957–970. http://doi.org/10.1007/s12517-011-0396-2.
[18] Shahriari, H., Ranjbar, H., & Honarmand, M. (2013). Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration–Area Fractal Model. Natural Resources Research, 22(3), 191–206. http://doi.org/10.1007/s11053-013-9211-y
[19] Aramesh Asl, R., Afzal, P., Adib, A., & Yasrebi, A. B. (2014). Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+ multispectral data. Arabian Journal of Geosciences, 8(5), 2997–3006. http://doi.org/10.1007/s12517-014-1366-2
[20] Berberian, F., Muir, I. D., Pankhurst, R. J., & Berberian, M. (1982). Late Cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5), 605–614. http://doi.org/10.1144/gsjgs.139.5.0605
[21] Mobasher, K., & Babaie, H. A. (2008). Kinematic significance of fold- and fault-related fracture systems in the Zagros mountains, southern Iran. Tectonophysics, 451(1-4), 156–169. http://doi.org/10.1016/j.tecto.2007.11.060
[22] Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran: Reply. Canadian Journal of Earth Sciences, 18(11), 1764–1766. http://doi.org/10.1139/e81-163
[23] Shahabpour, J. (1994). Post-mineralization breccia dike from the Sar Cheshmeh porphyry copper deposit, Kerman, Iran. Exploration and Mining Geology, 3(1). Retrieved from http://emg.geoscienceworld.org/cgi/content/long/3/1/39
[24] Dargahi, S., Arvin, M., Pan, Y., & Babaei, A. (2010). Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian–Eurasian continental collision. Lithos, 115(1-4), 190–204. http://doi.org/10.1016/j.lithos.2009.12.002
[25] Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., & Babaei, A. (2007). Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. Journal of Asian Earth Sciences, 30(3-4), 474–489. http://doi.org/10.1016/j.jseaes.2007.01.001
[26] Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., & Jolivet, L. (2008). Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences. Lithos, 106(3-4), 380–398. http://doi.org/10.1016/j.lithos.2008.09.008
[27] Caillat, C., Dehlavi, P., Jantin, B.-M., Nogol Sadat, A., Hushmandzadeh, A., Behruzi, A., Lotfi, M., Nazer, N. K., and Mahdavi, M. (1984). Geological map of Saveh 1:250,000 sheet. Geological Survey of Iran, Tehran.
[28] Abrams, M., & Hook, S. (2002). ASTER User Handbook Version 2. Jet Propulsion Laboratory, 135. Retrieved from Abrams2002NASA.pdf
[29] Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366. http://doi.org/10.1016/S0034-4257(02)00127-X
[30] Rowan, L. C., Schmidt, R. G., & Mars, J. C. (2006). Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104(1), 74–87. http://doi.org/10.1016/j.rse.2006.05.014
[31] Moore, F., Rastmanesh, F., Asadi, H., & Modabberi, S. (2008). Mapping mineralogical alteration using principal-component analysis and matched filter processing in the Takab area, north-west Iran, from ASTER data. International Journal of Remote Sensing, 29(10), 2851–2867. http://doi.org/10.1080/01431160701418989
[32] Tangestani, M. H., Mazhari, N., Agar, B., & Moore, F. (2008). Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran. International Journal of Remote Sensing, 29(10), 2833–2850. http://doi.org/10.1080/01431160701422239
[33] Carranza, E. J. M., van Ruitenbeek, F. J. a., Hecker, C., van der Meijde, M., & van der Meer, F. D. (2008). Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. International Journal of Applied Earth Observation and Geoinformation, 10(3), 374–387. http://doi.org/10.1016/j.jag.2008.02.008
[34] Honarmand, M., Ranjbar, H., & Shahabpour, J. (2012). Application of Principal Component Analysis and Spectral Angle Mapper in the Mapping of Hydrothermal Alteration in the Jebal-Barez Area, Southeastern Iran. Resource Geology, 62(2), 119–139. http://doi.org/10.1111/j.1751-3928.2012.00184.x
[35] Crósta, a. P., De Souza Filho, C. R., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24(21), 4233–4240. http://doi.org/10.1080/0143116031000152291
[36] Loughlin, W. P. (1991). Principal Component Analysis for mineral alteration mapping. Photogrammetric Engineering and Remote Sensing, (April 1985).
[37] Chavez P.S, J., & Kwarteng, A. Y. (1989). Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogrammetric Engineering and Remote Sensing, 55(3), 339–348. Retrieved from https://pubs.er.usgs.gov/publication/70015931
[38] Mars, J. C., & Rowan, L. C. (2006). Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2(3), 161. http://doi.org/10.1130/GES00044.1
[39] Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513. http://doi.org/10.1190/1.1440721
[40] Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74, 1613–1629. http://doi.org/10.2113/gsecongeo.74.7.1613
[41] Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175–194. http://doi.org/10.1016/S0375-6742(99)00028-X
[42] Cheng, Q., Xu, Y., & Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9(1), 43–52. Retrieved from http://springerlink.metapress.com/openurl.asp?genre=article&id=doi:10.1023/A:1010109829861
[43] Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V. V., & Calvin, W. M. (1993). The U. S. Geological Survey, Digital Spectral Library, 1, 0.2 to 3.0 micrometers. U.S. Geological Survey Open File Report 93-592.
[44] Alavi, M. (1994). Tectonics of the zagros orogenic belt of iran: new data and interpretations. Tectonophysics, 229(3-4), 211–238.
[45] Farahbakhsh, E., Shirmard, H., Bahroudi, A., & Eslamkish, T. (2015). Fusing ASTER and QuickBird-2 Satellite Data for Detailed Investigation of Porphyry Copper Deposits Using PCA; Case Study of Naysian Deposit, Iran. Journal of the Indian Society of Remote Sensing. http://doi.org/10.1007/s12524-015-0516-7