1] Byrne, P. M., Park, S.-S., Beaty, M., Sharp, M., Gonzalez, L.,& Abdoun, T. (2004). Numericalmodeling of liquefaction and comparison with centrifuge tests. Canadian Geotechnical Journal, 41(2), 193-211. doi: 10.1139/t03-088
[2] Kramer, S. (1996). Geotechnical earthquake engineering. in prentice–Hall internationalseries in civil engineering and engineering mechanics: Prentice-Hall, New Jersey.
[3] Finn, W., & Fujita, N. (2002). Piles in liquefiable soils: seismic analysis and design issues. Soil Dynamics and Earthquake Engineering, 22(9), 731-742.
[4] Bhattacharya, S., Sarkar, R., & Huang, Y. (2013). Seismic Design of Piles in Liquefiable Soils New Frontiers in Engineering Geology and the Environment (pp. 31-44): Springer.
[5] Youd, T., Idriss, I., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., . . . Hynes, M. E. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(10), 817-833.
[6] Steedman, R. S., Ledbetter, R. H., & Hynes, M. E. (2000). The influence of high confining stress on the cyclic behavior of saturated sand. Geotechnical Special Publication, 35-57.
[7] Rahmani, A., & Pak, A. (2012). Dynamic behavior of pile foundations under cyclic loading in liquefiable soils. Computers and Geotechnics, 40(0), 114-126. doi: http://dx.doi.org/10.1016/j.compgeo.2011.09.002.
[8] Yao, S., Kobayashi, K., Yoshida, N., & Matsuo, H. (2004). Interactive behavior of soil–pile-superstructure system in transient state to liquefaction by means of large shake table tests. Soil Dynamics and Earthquake Engineering, 24(5), 397-409.
[9] Tokimatsu, K., Suzuki, H., & Sato, M. (2005). Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation. Soil Dynamics and Earthquake Engineering, 25(7), 753-762.
[10] Wilson, D. W. (1998). Soil-pile-superstructure interaction in liquefying sand and soft clay. University of California, Davis.
[11] Haeri, S. M., Kavand, A., Rahmani, I., & Torabi, H. (2012). Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing. Soil Dynamics and Earthquake Engineering, 38, 25-45.
[12] Choobbasti, A. J., Saadati, M., & Tavakoli, H. R. (2012). Seismic response of pile foundations in liquefiable soil: parametric study. Arabian Journal of Geosciences, 5(6), 1307-1315.
[13] Phanikanth, V., Choudhury, D., & Reddy, G. (2012). Behavior of single pile in liquefied deposits during earthquakes. International Journal of Geomechanics, 13(4), 454-462.
[14] Cheng, Z., & Jeremić, B. (2009). Numerical modeling and simulation of pile in liquefiable soil. Soil Dynamics and Earthquake Engineering, 29(11), 1405-1416.
[15] Itasca Consulting Group, I. (2011). FLAC-fast Lagrangian analysis of continua. User’s manual, version 7.0, Minneapolis.
[16] Popescu, R., & Prevost, J. H. (1993). Centrifuge validation of a numerical model for dynamic soil liquefaction. Soil Dynamics and Earthquake Engineering, 12(2), 73-90.
[17] Asgari, A., Golshani, A., & Bagheri, M. (2014). Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand. Journal of Earth System Science, 123(2), 365-379.
[18] Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics & Foundations Div, 99(Tech Rpt).
[19] Seismosoft. (2013). SeismoSignal v5.1 – A computer program for signal processing of
Asaadi and Sharifipour / Int. J. Min. & Geo-Eng., Vol.49, No.1, June 2015
56
strong-motion data (Version 5.1): available from http://www.seismosoft.com.
[20] Byrne, P. M. (1991). A cyclic shear-volume coupling and pore pressure model for sand. Paper presented at the Proc., 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis