[1] Dewan, J.T. (1983). Essentials of modern open-hole log interpretation. Penn Well Books.
[2] Hilchie, D.W. (1982). Advanced well log interpretation. Douglas W. Hilchie.
[3] Worden, R.H., & Morad, S. (2003). Clay minerals in sandstones: controls on formation, distribution and evolution (pp. 1-41). Blackwell Publishing Ltd.
[4] Asquith, G.B., Krygowski, D., & Gibson, C.R. (2004). Basic well log analysis (Vol. 16). Tulsa, OK: American association of petroleum geologists.
[5] Moore, D.M., & Reynolds, R.C. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals (Vol. 378). Oxford: Oxford university press.
[6] Thornley, D.M., & Primmer, T.J. (1995). Thermogravimetry/ evolved water analysis (TG/EWA) combined with XRD for improved quantitative whole-rock analysis of clay minerals in sandstones. Clay Minerals, 30(1), 27-38.
[7] Gabbott, P. (Ed.). (2008). Principles and applications of thermal analysis. John Wiley & Sons.
[8] Arsenović, M., Pezo, L., Mančić, L., & Radojević, Z. (2014). Thermal and mineralogical characterization of loess heavy clays for potential use in brick industry. Thermochimica Acta, 580, 38-45.
[9] Stepkowska, E.T., Sułek, Z., Perez-Rodriguez, J.L., Maqueda, C., & Justo, A. (1991). A study of the thermal behaviour and geotechnical properties of a marine clay and its composites. In Thermal analysis in the geosciences (pp. 245-268). Springer Berlin Heidelberg.
Jozanikohan et al. / Int. J. Min. & Geo-Eng., Vol.49, No.1, June 2015
45
[10] Langier-Kuzniarowa, A. (1991). Remarks on the applicability of thermal analysis for the investigations of clays and related materials. In Thermal analysis in the geosciences (pp. 314-326). Springer Berlin Heidelberg.
[11] Yariv, S. (1991). Differential thermal analysis (DTA) of organo-clay complexes. In Thermal analysis in the geosciences (pp. 328-351). Springer Berlin Heidelberg.
[12] Grim, R.E., & Rowland, R.A. (1942). Differential thermal analysis of clay minerals and other hydrous materials. Part 1 and part 2. American mineralogist, 27, 746-761801.
[13] Johnson, L.J., Chu, C. H., & Hussey, G.A. (1985). Quantitative clay mineral analysis using simultaneous linear equations. Clays Clay Miner, 33(2), 107-117.
[14] Wilson, M.J. (1987). A Handbook of determinative methods in clay mineralogy. Blackie. Chapman and Hall.
[15] Bloodworth A.J., Hurst A. & Morgan D.J. (1990).Detection and estimation of low levels of kaolinite by evolved water vapour analysis. Mem. Sci, Geol.Strasbourg 89, 143-148.
[16] Guggenheim, S., & Van Groos, A.K. (2001). Baseline studies of the clay minerals society source clays: thermal analysis. Clays and Clay Minerals, 49(5), 433-443.
[17] Vaculíková, L., Plevová, E., Vallová, S., & Koutník, I. (2011). Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodynamica et Geomasteralia, 8(1).
[18] Earnest, C.M. (1991). Thermal analysis of selected illite and smectite clay minerals. Part II. Smectite clay minerals. In Thermal analysis in the geosciences (pp. 288-312). Springer Berlin Heidelberg.
[19] Mielenz, R.C., Schieltz, N.C., & King, M.E. (1953). Thermogravimetric analysis of clay and clay-like minerals. Clays and Clay Minerals, 2, 285-314.
[20] Clews, F.H. (1969). Heavy clay technology (pp. 172-202). London and New York: Academic Press.
[21] Ross, G.J., & Kodama, H. (1974). Experimental transformation of a chlorite into a vermiculite. Clays Clay Miner, 22, 205-211.
[22] Orcel, J. (1927). Thermal analysis of chlorites. Bull. soc. franç. minéral, 50, 278-322.
[23] Yeskis, D., van Groos, A.F., & Guggenheim, S. (1985). The dehydroxylation of kaolinite. American Mineralogist, 70, 159-164.
[24] Trindade, M.J., Dias, M.I., Coroado, J., & Rocha, F. (2009). Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42(3), 345-355.
[25] Alavi, M., Vaziri, H., Seyed-Emami, K., & Lasemi, Y. (1997). The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin. Geological Society of America Bulletin, 109(12), 1563-1575.
[26] Buryakovsky, L., Aminzadeh, F., & Chilingarian, G.V. (2001). Petroleum geology of the south Caspian Basin. Gulf Professional Publishing.
[27] Harb, A.A. (1979). The stratigraphy, tectonics and petroleum geology of the Kopet Dagh region, northern Iran (Doctoral dissertation, Imperial College London (University of London)).
[28] NIOC (National Iranian Oil Company, Exploration Directorate).(1986). Gonbadli geological well completion report, National Iranian Oil Company records, Tehran, Iran.
[29] Moussavi‐Harami, R., & Brenner, R.L. (1993). Diagenesis of non‐marine petroleum reservoirs: The Neocomian (Lower Cretaceous) Shurijeh Formation, Kopet‐Dagh Basin, NE Iran. Journal of Petroleum Geology, 16(1), 55-72.
[30] Indian Standard Methods of Chemical Analysis of Fireclay and Refractory Materials. (1960) IS: 1527.
[31] Selected Powder Diffraction Data for Minerals. (1974). Data book,Joint Committee on powder diffraction standards, USA, 1st ed.
[32] Wang, Q., Odlyha, M., & Cohen, N.S. (2000). Thermal analyses of selected soil samples from the tombs at the Tianma-Qucun site, Shanxi, China. Thermochimica acta, 365(1), 189-195.
[33] Papadopoulou, D.N., Lalia-Kantouri, M., Kantiranis, N., & Stratis, J.A. (2006). Thermal and mineralogical contribution to the ancient ceramics and natural clays characterization. Journal of thermal analysis and calorimetry, 84(1), 39-45.
[34] Martin, R.T. (1955). Reference chlorite characterization for chlorite identification in soil clays. Clays Clay Mineralogy, 117-145