The Use of Robust Factor Analysis of Compositional Geochemical Data for the Recognition of the Target Area in Khusf 1:100000 Sheet, South Khorasan, Iran

Document Type : Research Paper

Authors

Department of Mining, Faculty of Engineering, University of Birjand, Iran

Abstract

The closed nature of geochemical data has been proven in many studies. Compositional data have special properties that mean that standard statistical methods cannot be used to analyse them. These data imply a particular geometry called Aitchison geometry in the simplex space. For analysis, the dataset must first be opened by the various transformations provided. One of the most popular of the applied transformations is the log-ratio transform. The main purpose of this research is to identify the anomalous area in the Khusf 1:100000 sheet which is located in the western part of Birjand, South Khorasan province. To achieve the goal, a dataset of 652 stream sediments geochemically analysed for 20 elements was collected. In practice, the geochemical data were first opened by CLR transformation and then the range correlation coefficient (RCC) ratio was calculated and mapped. In consequence, the robust factor analysis for compositional data was used to separate the elements, mostly in the high-value regions obtained by the method of RCC. Finally, the priority of anomalies was specified using weighted catchment analysis. The above procedures led to the recognition of some anomaly zones for elements of Cu, Bi, Sb, Ni and Cr in the study area. Such results can be useful for designing an appropriate exploratory plan for semi-detailed and detailed exploration steps.

Keywords


[1] Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, pp. 170-176.
[2] Treiblmaier, H., Filzmoser, P. (2010). Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research. Information & management, 47(4), pp. 197-207.
[3] Filzmoser, P., Hron, K., Reimann, C. (2009a). Principal component analysis for compositional data with outliers. Environmetrics, 20(6), pp. 621-632.
[4] Reimann, C., Filzmoser, P., Garrett, R., &Dutter, R. (2008). Statistical data analysis explained: applied environmental statistics with R: John Wiley & Sons.
[5] Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167-185. Geochemical Exploration, 140, pp. 96-103.
[6] Aitchison, J. (1981). A new approach to null correlations of proportions. Journal of the International Association for Mathematical Geology, 13(2), pp. 175-189.
[7] Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70(1), pp. 57-65.
[8] Aitchison, J. (1984). The statistical analysis of geochemical compositions. Journal of the International Association for Mathematical Geology, 16(6), pp. 531-564.
[9] Aitchison, J. (1986). The statistical analysis of compositional data (Vol. 25): Chapman & Hall.
[10] Aitchison, J. (1999). Logratios and natural laws in compositional data analysis. Mathematical Geology, 31(5), pp. 563-580.
[11] Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J., Pawlowsky-Glahn, V. (2000). Logratio analysis and compositional distance. Mathematical Geology, 32(3), pp. 271-275.
[12] Buccianti, A., Pawlowsky-Glahn, V. (2005). New perspectives on water chemistry and compositional data analysis. Mathematical Geology, 37(7), pp. 703-727.
13] Chayes, F. (1960). On correlation between variables of constant sum. Journal of Geophysical research, 65(12), pp. 4185-4193.
[14] Egozcue, J. J., Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37(7), pp. 795-828.
[15] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C. (2003). Isometric logratio transformations for 
compositional data analysis. Mathematical Geology, 35(3), pp. 279-300.
[16] Filzmoser, P., Hron, K., Reimann, C. (2009 b). Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Science of the Total Environment, 407(23), pp. 6100-6108.
[17] Miesch, A. (1969). The constant sum problem in geochemistry, Springer, pp. 161-176.
[18] Thió-Henestrosa, S., Martín-Fernández, J. (2005). Dealing with compositional data: the freeware CoDaPack. Mathematical Geology, 37(7), pp. 773-793.
[19] Filzmoser, P., Hron, K., Reimann, C. (2012). Interpretation of multivariate outliers for compositional data. Computers & Geosciences, 39, pp. 77-85.
[20] Gallo, M., Buccianti, A. (2013). Weighted principal component analysis for compositional data: application example for the water chemistry of the Arno River (Tuscany, central Italy). Environmetrics, 24(4), pp. 269-277.
[21] Verma, S. P., Guevara, M., Agrawal, S. (2006). Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log—ratio transformation of major-element data. Journal of Earth System Science, 115(5), pp. 485-528.
[22] Wang, W., Zhao, J., Cheng, Q. (2013). Fault trace-oriented singularity mapping technique to characterize anisotropic geochemical signatures in Gejiu mineral district, China. Journal of Geochemical Exploration, 134, pp. 27-37.
[23] Filzmoser, P., Hron, K. (2009). Correlation analysis for compositional data. Mathematical Geosciences, 41(8), pp. 905-919.
[24] Arjmandzadeh, R., Karimpour, M., Mazaheri, S., Santos, J., Medina, J., Homam, S. (2011). Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljamigranitoids (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 41(3), pp. 283-296.
[25] Filzmoser, P., Hron, K., Reimann, C. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408(19), pp. 4230-4238.
[26] Ricardo, A. V. (2008). Why, and how, we should use compositional data analysis, A Step-by-Step Guide for the Field Geologists (S. Parker Ed.). Toronto, Ontario.
[27] Reimann, C., Filzmoser, P., Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3), pp. 185-206.
[28] Johnson, R., Wichern, D. (2007). Applied Multivariate Statistical Analysis. Prentice-Hall, 6nd Edition.
[29] Filzmoser, P., Hron, K., Reimann, C., Garrett, R. (2009 c). Robust factor analysis for compositional data. Computers & Geosciences, 35(9), 1854-1861.
[30] Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, S., Li, W., Qinglin, X. (2011). A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers & Geosciences, 37(5), pp. 662-669.
[31] Horel, J. (1984). Complex principal component analysis: Theory and examples. Journal of climate and Applied Meteorology, 23(12), pp. 1660-1673.
[32] Jolliffe, I. (1991). Principal component analysis: Wiley Online Library.
[33] Loughlin, W. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), pp. 1163-1169.
[34] Filzmoser, P., Hron, K., Reimann, C. (2005). Principal component analysis for compositional data with outliers. Environmetrics, 20(6), pp. 621-632.
[35] Filzmoser, P., Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40(3), pp. 233-248.
[36] Barnett, V., Lewis, T. (1984). Outliers in statistical data. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics, Chichester: Wiley, 1984, 2nd ed., 1.
[37] Barceló, C., Pawlowsky, V., Grunsky, E. (1996). Some aspects of transformations of compositional data and the identification of outliers. Mathematical Geology, 28(4), pp. 501-518.
[38] Rousseeuw, P.J., Driessen, K.V. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), pp. 212-223.
[39] Maronna, R., Martin, R., Yohai, V. (2006). Robust Statistics: Theory and Methods: Wiley, New York.
[40] Egozcue, J. J., Pawlowsky-Glahn, V. (2006). 
Simplicial geometry for compositional data. Geological Society, London, Special Publications, 264(1), pp. 145-159.
[41] Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11): Elsevier.
[42] Bonham-Carter, G., Rogers, P., Ellwood, D. (1987). Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia. Journal of Geochemical Exploration, 29(1), pp. 259-278.
[43] Spadoni, M. (2006). Geochemical mapping using a geomorphologic approach based on catchments. Journal of Geochemical Exploration, 90(3), pp. 183-196.
[44] Yousefi, M., Carranza, E. J. M., Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. Journal of Geochemical Exploration, 128, pp. 88-96.
[45] Abdolmaleki, M., Mokhtari, A. R., Akbar, S., Alipour-Asll, M., Carranza, E. J. M. (2014). Catchment basin analysis of stream sediment geochemical data: Incorporation of slope effect. Journal of Geochemical Exploration, 140, pp. 96-103.
[46] Garrett, R.G. (2013). The ‘rgr’package for the R Open Source statistical computing and graphics environment-a tool to support geochemical data interpretation. Geochemistry: Exploration, Environment, Analysis, 13(4), pp. 355-378.
[47] Pawlowsky-Glahn, V., Egozcue, J. (2006). Compositional data and their analysis: an introduction. Geological Society, London, Special Publications, 264(1), pp. 1-10.
[48] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A. (2011). Robust statistics: the approach based on influence functions (Vol. 114): John Wiley & Sons.