[1] Zuo, R. (2014). Identification of geochemical anomalies associated with mineralization in the Fanshan district, Fujian, China. Journal of Geochemical Exploration, 139, pp. 170-176.
[2] Treiblmaier, H., Filzmoser, P. (2010). Exploratory factor analysis revisited: How robust methods support the detection of hidden multivariate data structures in IS research. Information & management, 47(4), pp. 197-207.
[3] Filzmoser, P., Hron, K., Reimann, C. (2009a). Principal component analysis for compositional data with outliers. Environmetrics, 20(6), pp. 621-632.
[4] Reimann, C., Filzmoser, P., Garrett, R., &Dutter, R. (2008). Statistical data analysis explained: applied environmental statistics with R: John Wiley & Sons.
[5] Carranza, E.J.M. (2011). Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167-185. Geochemical Exploration, 140, pp. 96-103.
[6] Aitchison, J. (1981). A new approach to null correlations of proportions. Journal of the International Association for Mathematical Geology, 13(2), pp. 175-189.
[7] Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70(1), pp. 57-65.
[8] Aitchison, J. (1984). The statistical analysis of geochemical compositions. Journal of the International Association for Mathematical Geology, 16(6), pp. 531-564.
[9] Aitchison, J. (1986). The statistical analysis of compositional data (Vol. 25): Chapman & Hall.
[10] Aitchison, J. (1999). Logratios and natural laws in compositional data analysis. Mathematical Geology, 31(5), pp. 563-580.
[11] Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J., Pawlowsky-Glahn, V. (2000). Logratio analysis and compositional distance. Mathematical Geology, 32(3), pp. 271-275.
[12] Buccianti, A., Pawlowsky-Glahn, V. (2005). New perspectives on water chemistry and compositional data analysis. Mathematical Geology, 37(7), pp. 703-727.
13] Chayes, F. (1960). On correlation between variables of constant sum. Journal of Geophysical research, 65(12), pp. 4185-4193.
[14] Egozcue, J. J., Pawlowsky-Glahn, V. (2005). Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37(7), pp. 795-828.
[15] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C. (2003). Isometric logratio transformations for
compositional data analysis. Mathematical Geology, 35(3), pp. 279-300.
[16] Filzmoser, P., Hron, K., Reimann, C. (2009 b). Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Science of the Total Environment, 407(23), pp. 6100-6108.
[17] Miesch, A. (1969). The constant sum problem in geochemistry, Springer, pp. 161-176.
[18] Thió-Henestrosa, S., Martín-Fernández, J. (2005). Dealing with compositional data: the freeware CoDaPack. Mathematical Geology, 37(7), pp. 773-793.
[19] Filzmoser, P., Hron, K., Reimann, C. (2012). Interpretation of multivariate outliers for compositional data. Computers & Geosciences, 39, pp. 77-85.
[20] Gallo, M., Buccianti, A. (2013). Weighted principal component analysis for compositional data: application example for the water chemistry of the Arno River (Tuscany, central Italy). Environmetrics, 24(4), pp. 269-277.
[21] Verma, S. P., Guevara, M., Agrawal, S. (2006). Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log—ratio transformation of major-element data. Journal of Earth System Science, 115(5), pp. 485-528.
[22] Wang, W., Zhao, J., Cheng, Q. (2013). Fault trace-oriented singularity mapping technique to characterize anisotropic geochemical signatures in Gejiu mineral district, China. Journal of Geochemical Exploration, 134, pp. 27-37.
[23] Filzmoser, P., Hron, K. (2009). Correlation analysis for compositional data. Mathematical Geosciences, 41(8), pp. 905-919.
[24] Arjmandzadeh, R., Karimpour, M., Mazaheri, S., Santos, J., Medina, J., Homam, S. (2011). Sr–Nd isotope geochemistry and petrogenesis of the Chah-Shaljamigranitoids (Lut Block, Eastern Iran). Journal of Asian Earth Sciences, 41(3), pp. 283-296.
[25] Filzmoser, P., Hron, K., Reimann, C. (2010). The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 408(19), pp. 4230-4238.
[26] Ricardo, A. V. (2008). Why, and how, we should use compositional data analysis, A Step-by-Step Guide for the Field Geologists (S. Parker Ed.). Toronto, Ontario.
[27] Reimann, C., Filzmoser, P., Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3), pp. 185-206.
[28] Johnson, R., Wichern, D. (2007). Applied Multivariate Statistical Analysis. Prentice-Hall, 6nd Edition.
[29] Filzmoser, P., Hron, K., Reimann, C., Garrett, R. (2009 c). Robust factor analysis for compositional data. Computers & Geosciences, 35(9), 1854-1861.
[30] Cheng, Q., Bonham-Carter, G., Wang, W., Zhang, S., Li, W., Qinglin, X. (2011). A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China. Computers & Geosciences, 37(5), pp. 662-669.
[31] Horel, J. (1984). Complex principal component analysis: Theory and examples. Journal of climate and Applied Meteorology, 23(12), pp. 1660-1673.
[32] Jolliffe, I. (1991). Principal component analysis: Wiley Online Library.
[33] Loughlin, W. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), pp. 1163-1169.
[34] Filzmoser, P., Hron, K., Reimann, C. (2005). Principal component analysis for compositional data with outliers. Environmetrics, 20(6), pp. 621-632.
[35] Filzmoser, P., Hron, K. (2008). Outlier detection for compositional data using robust methods. Mathematical Geosciences, 40(3), pp. 233-248.
[36] Barnett, V., Lewis, T. (1984). Outliers in statistical data. Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics, Chichester: Wiley, 1984, 2nd ed., 1.
[37] Barceló, C., Pawlowsky, V., Grunsky, E. (1996). Some aspects of transformations of compositional data and the identification of outliers. Mathematical Geology, 28(4), pp. 501-518.
[38] Rousseeuw, P.J., Driessen, K.V. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41(3), pp. 212-223.
[39] Maronna, R., Martin, R., Yohai, V. (2006). Robust Statistics: Theory and Methods: Wiley, New York.
[40] Egozcue, J. J., Pawlowsky-Glahn, V. (2006).
Simplicial geometry for compositional data. Geological Society, London, Special Publications, 264(1), pp. 145-159.
[41] Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11): Elsevier.
[42] Bonham-Carter, G., Rogers, P., Ellwood, D. (1987). Catchment basin analysis applied to surficial geochemical data, Cobequid Highlands, Nova Scotia. Journal of Geochemical Exploration, 29(1), pp. 259-278.
[43] Spadoni, M. (2006). Geochemical mapping using a geomorphologic approach based on catchments. Journal of Geochemical Exploration, 90(3), pp. 183-196.
[44] Yousefi, M., Carranza, E. J. M., Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. Journal of Geochemical Exploration, 128, pp. 88-96.
[45] Abdolmaleki, M., Mokhtari, A. R., Akbar, S., Alipour-Asll, M., Carranza, E. J. M. (2014). Catchment basin analysis of stream sediment geochemical data: Incorporation of slope effect. Journal of Geochemical Exploration, 140, pp. 96-103.
[46] Garrett, R.G. (2013). The ‘rgr’package for the R Open Source statistical computing and graphics environment-a tool to support geochemical data interpretation. Geochemistry: Exploration, Environment, Analysis, 13(4), pp. 355-378.
[47] Pawlowsky-Glahn, V., Egozcue, J. (2006). Compositional data and their analysis: an introduction. Geological Society, London, Special Publications, 264(1), pp. 1-10.
[48] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A. (2011). Robust statistics: the approach based on influence functions (Vol. 114): John Wiley & Sons.