[4] Giannopoulos, A., (2005). Modeling ground penetrating radar by GprMax. Constr. Build. Mater. v. 19, pp. 775-762.
[5] Cassidy, N.J., (2001). The application of mathematical modelling in the interpretation of Ground Penetrating Radar data. Ph.D. Thesis, Keele University.
[6] Chen, H.W., Huang, T.M., (1998). Finite- difference time- domain simulation of GPR data. J. Appl. Geophys. v. 40, pp. 139–163.
[7] Teixeria, F.L., Chew, W.C., Straka, M., Oristaglio, M.L., Wang, T., (1998). Finite- difference time- domain simulation of Ground Penetrating Radar on dispersive, inhomogeneous and conductive soils. IEEE. T. Geosci. Remote. v. 36, no. 6, pp. 1928–1937.
[8] Bergmann, T., Robertsson, J.O.A., Holliger, K., (1998). Finite- difference modelling of electromagnetic wave propagation in dispersive and attenuating media. Geophys. v. 63, no. 3, pp. 856–867.
[9] Yee, K.S., Chen, J.S., (1997). The finite- difference time- domain (FDTD) and the finite- volume time- domain (FVTD) methods in solving Maxwell’s equations. IEEE. T. Antenn. Propag. v. 45, no. 3, pp. 354–363.
[10] Roberts, R.L., Daniels, J.J., (1997). Modelling near-field GPR in three dimensions using the FDTD method. Geophys. v. 62, no. 4, pp. 1114–1126.
[11] Bourgeois, J.M., Smith, G.S., (1996). A fully three- dimensional simulation of a ground penetrating radar: FDTD theory compared with experiment. IEEE. T. Geosci. Remote. v. 34, pp. 36–44.
[12] Weedon, W.H., Rappaport, C.M., (1997). A general method for FDTD modelling of wave propagation in arbitrary frequency-dispersive media. IEEE. T. Antenn. Propag. v. 45, no. 3, pp. 401–409.
[13] Jol, H.M., (2009). Ground-Penetrating Radar theory and applications. First edition, Elsevier Science. 543 Pages.
[14] Delbò, S., Gamba, P., Roccato, D., (2000). A fuzzy shell clustering approach to recognize hyperbolic signatures in subsurface radar images. IEEE. T. Geosci. Remote. v. 38, no. 3, pp. 1447–1451.
[15] Strange, A., Chandran, V., Ralston, J., (2002). Signal processing to improve target detection using ground penetrating radar, Fourth Australasian Workshop on Signal Processing and Applications (WOSPA), Brisbane, Australia.
[16] Rossini, M., (2003). Detecting objects hidden in the subsoil by a mathematical method. Comput. Math. Appl. v. 45, no. 1, pp. 299–307.
[17] Lian Fei-yu, Li Qing, (2011). Recognition method based on SVM for underground pipe diameter size in GPR map. Inform. Elect. Eng. v. 9, no. 4, pp. 403-408.
[18] http://mysite.du.edu/~lconyers/SERDP/ GPR2. htm
[19] Annan, A.P., (2001). Ground-penetrating radar workshop notes, Sensors and Software Inc. Mississauga, ON, Canada, 192 pages.
[20] Bergmann, T., Robertsson, J.O.A., Holliger, K. (1996). Numerical properties of staggered finite-difference solutions of Maxwell's equations for ground-penetrating radar modeling. Geophys. Res. Let. v. 23, no. 1, pp. 45-48.
[21] Georgakopoulos, S.V., Birtcher, C.R., Balanis, C.A., Renaut, R.A., (2002). Higher-order finite-difference schemes for electromagnetic radiation, scattering, and penetration, Part 1: theory. IEEE. Antenn. Propag. M., v. 44, pp. 134–142.
[22] Grossman, A., Morlet, J., (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM. J. Math. Anal. v. 15, no. 4, pp. 723-736.
[23] Walker, J.S., (2008). A primer on wavelets and their scientific applications, second edition, Chapman & Hall/CRC, Taylor & Francis Group.
[24] Gilbert, S., (1989). Wavelets and dilation equations: a brief introduction. SIAM Review, Published by: Soc. Ind. Appl. Math. v. 31, no. 4, pp. 614-627.
[25] Naik, S., Patel, N., (2013). Single image super resolution in spatial and wavelet domain. Int. J. Multi. Appl. (IJMA), v. 5, no. 4, pp. 23-32.
[26] Temizel, A., Vlachos, T., (2005). Image resolution up scaling in the wavelet domain using directional cycle spinning. J. Electron. Let. v. 41, pp. 119–121.
[27] Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M. (eds) (2007). Frontmatter, in wavelets and their applications, ISTE, London, UK. doi:10.1002/9780470612491.fmatter
[28] Jensen, A., Courharbo, A.la, (2001). Rip Math: The Discrete Wavelet Transform, springer.