[1] Sohrabian, B., & Tercan, A. E. (2014). Introducing minimum spatial cross-correlation kriging as a new estimation method of heavy metal contents in soils. Geoderma. doi:https://doi.org/10.1016/j.geoderma.2014.02.014.
[2] Sohrabian, B., Ozcelik, Y., & Hasanpour, R. (2017). Estimating major elemental oxides of an andesite quarry using compositional kriging. International Journal of Mining, Reclamation and Environment. doi:https://doi.org/10.1080/17480930.2016.1168019.
[3] Jeuken, R., Xu, C., & Dowd, P. (2020). Improving coal quality estimations with geostatistics and geophysical logs. Natural Resources Research. doi:https://doi.org/10.1007/s11053-019-09609-y.
[4] Rahimi, H., Asghari, O., & Afshar, A. (2018). A geostatistical investigation of 3D magnetic inversion results using multi-Gaussian kriging and sequential Gaussian co-simulation. Journal of Applied Geophysics. doi:https://doi.org/10.1016/j.jappgeo.2018.05.003.
[5] Lloyd, C. D., & Atkinson, P. M. (2001). Assessing uncertainty in estimates with ordinary and indicator kriging. Computers & Geosciences. doi:https://doi.org/10.1016/S0098-3004(00)00132-1.
[6] Gräler, B., & Pebesma, E. (2011). The pair-copula construction for spatial data: A new approach to model spatial dependency. Procedia Environmental Sciences. doi:https://doi.org/10.1016/j.proenv.2011.07.036.
[7] Sohrabian, B., Soltani-Mohammadi, S., Pourmirzaee, R., & Carranza, E. J. M. (2023). Geostatistical evaluation of a porphyry copper deposit using copulas. Minerals, 13(6), Article 732. doi:https://doi.org/10.3390/min13060732.
[8] Sohrabian, B., & Tercan, A. E. (2024). Copula-based data-driven multiple-point simulation method. Spatial Statistics, 58, 100802. doi:https://doi.org/10.1016/j.spasta.2023.100802.
[9] Sohrabian, B., & Tercan, A. (2025). Grade estimation through the Gaussian copulas: A case study. Journal of Mining and Environment, 16, 1–13.
[10] Gräler, B. (2014). Modelling skewed spatial random fields through the spatial vine copula. Spatial Statistics, 8, 1–14. doi:https://doi.org/10.1016/j.spasta.2014.01.001.
[11] Shaked, M., & Joe, H. (1998). Multivariate models and dependence concepts. Journal of the American Statistical Association. doi:https://doi.org/10.2307/2669872.
[12] Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: Applicability and limitations. Statistics & Probability Letters. doi:https://doi.org/10.1016/S0167-7152(03)00092-0.
[13] Bárdossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research. doi:https://doi.org/10.1029/2005WR004754.
[14] Van de Vyver, H., & Van den Bergh, J. (2018). The Gaussian copula model for the joint deficit index for droughts. Journal of Hydrology. doi:https://doi.org/10.1016/j.jhydrol.2018.03.064.
[15] Li, F., Zhou, J., & Liu, C. (2018). Statistical modelling of extreme storms using copulas: A comparison study. Coastal Engineering. doi:https://doi.org/10.1016/j.coastaleng.2018.09.007.
[16] Lourme, A., & Maurer, F. (2017). Testing the Gaussian and Student’s t copulas in a risk management framework. Economic Modelling. doi:https://doi.org/10.1016/j.econmod.2016.12.014.
[17] Marchant, B. P., Saby, N. P. A., Jolivet, C. C., Arrouays, D., & Lark, R. M. (2011). Spatial prediction of soil properties with copulas. Geoderma. doi:https://doi.org/10.1016/j.geoderma.2011.03.005.
[18] Quessy, J. F., Rivest, L. P., & Toupin, M. H. (2019). Goodness-of-fit tests for the family of multivariate chi-square copulas. Computational Statistics & Data Analysis. doi:https://doi.org/10.1016/j.csda.2019.04.008.
[19] Musafer, G. N., Thompson, M. H., Wolff, R. C., & Kozan, E. (2017). Nonlinear multivariate spatial modeling using NLPCA and pair-copulas. Geographical Analysis. doi:https://doi.org/10.1111/gean.12126.
[20] Pardo-Igúzquiza, E., & Dowd, P. A. (2005). EMLK2D: A computer program for spatial estimation using empirical maximum likelihood kriging. Computers & Geosciences. doi:https://doi.org/10.1016/j.cageo.2004.09.020.
[21] Heriawan, M. N., & Koike, K. (2008). Uncertainty assessment of coal tonnage by spatial modeling of seam distribution and coal quality. International Journal of Coal Geology. doi:https://doi.org/10.1016/j.coal.2008.07.014.
[22] Vargas-Guzmán, J. A. (2008). Unbiased resource evaluations with kriging and stochastic models of heterogeneous rock properties. Natural Resources Research. doi:https://doi.org/10.1007/s11053-008-9082-9
[23] Ali Akbar, D. (2012). Reserve estimation of central part of Choghart north anomaly iron ore deposit through ordinary kriging method. International Journal of Mining Science and Technology. doi:https://doi.org/10.1016/j.ijmst.2012.01.022.
[24] Rohma, N. N. (2022). Estimation of ordinary kriging method with jackknife technique on rainfall data in Malang Raya. International Journal on Information and Communication Technology (IJoICT). doi:https://doi.org/10.21108/ijoict.v8i2.678.
[25] Lamamra, A., Neguritsa, D. L., & Mazari, M. (2019). Geostatistical modeling by the ordinary kriging in the estimation of mineral resources on the Kieselguhr mine, Algeria. IOP Conference Series: Earth and Environmental Science, 362(1), 012051. doi:https://doi.org/10.1088/1755-1315/362/1/012051.
[26] Da Rocha, M. M., & Yamamoto, J. K. (2000). Comparison between kriging variance and interpolation variance as uncertainty measurements in the Capanema iron mine, State of Minas Gerais-Brazil. Natural Resources Research. doi:https://doi.org/10.1023/a:1010195701968.
[27] Fogg, G. E. (1996). Transition probability-based indicator geostatistics. Mathematical Geology. doi:https://doi.org/10.1007/bf02083656.
[28] Carr, J. R., & Mao, N. (1993). A general form of probability kriging for estimation of the indicator and uniform transforms. Mathematical Geology. doi:https://doi.org/10.1007/BF00894777.
[29] Bárdossy, A., & Li, J. (2008). Geostatistical interpolation using copulas. Water Resources Research. doi:https://doi.org/10.1029/2007WR006115.
[30] Kazianka, H., & Pilz, J. (2010). Copula-based geostatistical modeling of continuous and discrete data including covariates. Stochastic Environmental Research and Risk Assessment. doi:https://doi.org/10.1007/s00477-009-0353-8.
[31] Atalay, F., & Tercan, A. E. (2017). Coal resource estimation using Gaussian copula. International Journal of Coal Geology. doi:https://doi.org/10.1016/j.coal.2017.03.010.
[32] Käärik, E., & Käärik, M. (2009). Modeling dropouts by conditional distribution, a copula-based approach. Journal of Statistical Planning and Inference. doi:https://doi.org/10.1016/j.jspi.2009.05.020.
[33] Klugman, S. A. (2011). Copula regression. Variance, 5.
[34] Kwak, M. (2017). Estimation and inference on the joint conditional distribution for bivariate longitudinal data using Gaussian copula. Journal of the Korean Statistical Society. doi:https://doi.org/10.1016/j.jkss.2016.11.005.
[35] Chang, B., & Joe, H. (2019). Prediction based on conditional distributions of vine copulas. Computational Statistics & Data Analysis. doi:https://doi.org/10.1016/j.csda.2019.04.015.
[36] Addo, E., Chanda, E. K., & Metcalfe, A. V. (2017). Estimation of direction of increase of gold mineralisation using pair-copulas. Proceedings of the 22nd International Congress on Modelling and Simulation (MODSIM 2017). doi:https://doi.org/10.36334/modsim.2017.a2.addo.
[37] Musafer, G. N., Thompson, M. H., Kozan, E., & Wolff, R. C. (2017). Spatial pair-copula modeling of grade in ore bodies: A case study. Natural Resources Research. doi:https://doi.org/10.1007/s11053-016-9314-3.
[38] Bárdossy, A., & Hörning, S. (2023). Definition of spatial copula based dependence using a family of non-Gaussian spatial random fields. Water Resources Research. doi:https://doi.org/10.1029/2023WR034446.
[39] Agarwal, G., Sun, Y., & Wang, H. J. (2021). Copula-based multiple indicator kriging for non-Gaussian random fields. Spatial Statistics. doi:https://doi.org/10.1016/j.spasta.2021.100524.
[40] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges (Distribution functions of n dimensions and their marginals). Publications de l’Institut Statistique de l’Université de Paris, 8.
[41] Hohn, M. E. (1991). An introduction to applied geostatistics. Computers & Geosciences. doi:https://doi.org/10.1016/0098-3004(91)90055-i.
[42] Deutsch, C. V. (1996). Correcting for negative weights in ordinary kriging. Computers & Geosciences. doi:https://doi.org/10.1016/0098-3004(96)00005-2.
[43] Pesquer, L., Cortés, A., & Pons, X. (2011). Parallel ordinary kriging interpolation incorporating automatic variogram fitting. Computers & Geosciences. doi:https://doi.org/10.1016/j.cageo.2010.10.010.
[44] Munyati, C., & Sinthumule, N. I. (2021). Comparative suitability of ordinary kriging and inverse distance weighted interpolation for indicating intactness gradients on threatened savannah woodland and forest stands. Environmental and Sustainability Indicators. doi:https://doi.org/10.1016/j.indic.2021.100151.
[45] Daya, A. A., & Bejari, H. (2015). A comparative study between simple kriging and ordinary kriging for estimating and modeling the Cu concentration in Chehlkureh deposit, SE Iran. Arabian Journal of Geosciences. doi:https://doi.org/10.1007/s12517-014-1618-1.
[46] Paoli, J. N., Tisseyre, B., Strauss, O., & Roger, J. M. (2024). Methods to define confidence intervals for kriged values: Application to precision viticulture data. Precision Agriculture. doi:https://doi.org/10.3920/9789086865147_079.
[47] Virtanen, P., Gommers, R., Oliphant, T. E., et al. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods. doi:https://doi.org/10.1038/s41592-019-0686-2.
[48] Abraj, M., Wang, Y. G., & Thompson, M. H. (2022). A new mixture copula model for spatially correlated multiple variables with an environmental application. Scientific Reports. doi:https://doi.org/10.1038/s41598-022-18007-z.
[49] Bevilacqua, M., Alvarado, E., & Caamaño-Carrillo, C. (2024). A flexible Clayton-like spatial copula with application to bounded support data. Journal of Multivariate Analysis. doi:https://doi.org/10.1016/j.jmva.2023.105277.
[50] Cristianini, N. (2004). Cross-validation (K-fold cross-validation, leave-one-out, jackknife, bootstrap). Dictionary of Bioinformatics and Computational Biology. doi:https://doi.org/10.1002/9780471650126.dob0148.pub2.
[51] Jandaghian, Z., & Berardi, U. (2021). The coupling of the Weather Research and Forecasting model with the Urban Canopy Models for climate simulations. In Urban Microclimate Modelling for Comfort and Energy Studies. doi:https://doi.org/10.1007/978-3-030-65421-4_11.
[52] Kazianka, H., & Pilz, J. (2011). Bayesian spatial modeling and interpolation using copulas. Computers & Geosciences. doi:https://doi.org/10.1016/j.cageo.2010.06.005.
[53] Hodson, T. O., Over, T. M., & Foks, S. S. (2021). Mean squared error, deconstructed. Journal of Advances in Modeling Earth Systems. doi:https://doi.org/10.1029/2021MS002681.
[54] Cotrina, M., Marquina, J., Noriega, E., Mamani, J., Ccatamayo, J., Gonzalez, J., & Arango, S. (2024). Predicting open pit mine production using machine learning techniques: A case study in Peru. Journal of Mining and Environment, 15, 1345–1355.
[55] Marquina, J., Cotrina, M., Mamani, J., Noriega, E., & Vega, J., Cruz, J. (2024). Copper ore grade prediction using machine learning techniques in a copper deposit. Journal of Mining and Environment, 15, 1011–1027.
[56] Marquina-Araujo, J. J., Cotrina-Teatino, M. A., Cruz-Galvez, J. A., Noriega-Vidal, E. M., & Vega-Gonzalez, J. A. (2024). Application of autoencoders neural network and K-means clustering for the definition of geostatistical estimation domains. Mathematical Modelling of Engineering Problems, 11, 1207–1218.
[57] Zhang, M., Zhang, Y., & Yu, G. (2017). Applied geostatistics analysis for reservoir characterization based on the SGeMS (Stanford Geostatistical Modeling Software). Open Journal of Yangtze Oil and Gas. doi:https://doi.org/10.4236/ojogas.2017.21004.
[58] Marwanza, I., Nas, C., Azizi, M. A., & Simamora, J. H. (2019). Comparison between moving windows statistical method and kriging method in coal resource estimation. Journal of Physics: Conference Series, 1402(3), 033016. doi:https://doi.org/10.1088/1742-6596/1402/3/033016
[59] Lemenkova, P. (2019). Computing and plotting correlograms by Python and R libraries for correlation analysis of the environmental data in marine geomorphology. Journal of Geomorphological Researches, 1.
[60] Cotrina-Teatino, M. A., Marquina-Araujo, J. J., & Riquelme, Á. I. (2025). Comparison of machine learning techniques for mineral resource categorization in a copper deposit in Peru. Natural Resources Research. doi:https://doi.org/10.1007/s11053-025-10505-x.
[61] Cotrina-Teatino, M. A., Riquelme, Á. I., Marquina-Araujo, J. J., Mamani-Quispe, J. N., Arango-Retamozo, S. M., Ccatamayo-Barrios, J. H., Donaires-Flores, T., Calla-Huayapa, M. A., & Gonzalez-Vasquez, J. A. (2025). KMeans-Riemannian model for classification of mineral resources in a copper deposit in Peru. International Journal of Mining, Reclamation and Environment. doi:https://doi.org/10.1080/17480930.2025.2518987.