[1] Zou, S., & Sun, C. (2020). X-ray microcomputed imaging of wettability characterization for multiphase flow in porous media: A review. Capillarity, 3(3), 36–44. doi:
https://doi.org/10.46690/capi.2020.03.01
[2] Li, X., Li, B., Liu, F., Li, T., & Nie, X. (2023). Advances in the application of deep learning methods to digital rock technology. Advances in Geo-Energy Research, 8(1), 5–18. doi:
https://doi.org/10.46690/ager.2023.04.02
[3] Guntoro, P. I., Ghorbani, Y., Koch, P.-H., & Rosenkranz, J. (2019). X-ray Microcomputed Tomography (µCT) for Mineral Characterization: A Review of Data Analysis Methods. Minerals, 9(3), 183.
https://doi.org/10.3390/min9030183
[4] Tung, Patrick, Halim, Amalia, Wang, Helen, Rich, Anne, Chen, Xiao, Regenauer-Lieb, Klaus, & Marjo, Christopher. (2024). Deep learning 3D-mineral liberation analysis with micro-X-ray fluorescence, micro-computed tomography, and deep learning segmentation. BIO Web Conf., 129, 27004.
https://doi.org/10.1051/bioconf/202412927004
[5] Feali, M., Pinczewski, W. V., Cinar, Y., Arns, C., Arns, J.-Y., Turner, M., Senden, T., Francois, N., & Knackstedt, M. A. (2012). Qualitative and quantitative analyses of the three-phase distribution of oil, water, and gas in Bentheimer sandstone by use of micro-CT imaging. SPE Reservoir Evaluation & Engineering. doi:
https://openresearch-repository.anu.edu.au/items/099f39fc-2db0-4964-913b-62ab8c499492
[8] Wetzel, M., Kempka, T., & Kühn, M. (2020). Hydraulic and mechanical impacts of pore space alterations within a sandstone quantified by a flow velocity-dependent precipitation approach. Materials, 13(14), 3100. doi:
https://doi.org/10.3390/ma13143100
[10] Brondolo, F., & Beaussant, S. (2024). DINOv2 rocks geological image analysis: Classification, segmentation, and interpretability [Preprint]. arXiv.
https://arxiv.org/abs/2407.18100
[11] Nickerson, S., Shu, Y., Zhong, D., Könke, C., & Tandia, A. (2019). Permeability of porous ceramics by X-ray CT image analysis. Acta Materialia, 172, 121–130. doi:
https://doi.org/10.1016/j.actamat.2019.04.053
[12] Wildenschild, D., & Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217–246. doi:
https://doi.org/10.1016/j.advwatres.2012.07.018
[14] Cobos, S. F., Norley, C. J., Pollmann, S. I., & Holdsworth, D. W. (2022). Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components. PLOS ONE, 17(10), e0275732. doi:
https://doi.org/10.1371/journal.pone.0275732
[15] Cengiz, I. F., Oliveira, J. M., & Reis, R. L. (2018). Micro-CT – A digital 3D microstructural voyage into scaffolds: A systematic review of the reported methods and results. Biomaterials Research, 22, 26. doi:
https://doi.org/10.1186/s40824-018-0136-8
[16] Karimpouli, S., & Tahmasebi, P. (2019). Segmentation of digital rock images using deep convolutional autoencoder networks. Computers & Geosciences, 126, 142–150. doi:
https://doi.org/10.1016/j.cageo.2019.02.003
[17] Madonna, C., Almqvist, B. S. G., & Saenger, E. H. (2012). Digital rock physics: Numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophysical Journal International, 189(3), 1475–1482. doi:
https://doi.org/10.1111/j.1365-246X.2012.05437.x
[19] Balcewicz, M., Siegert, M., Gurris, M., Ruf, M., Krach, D., Steeb, H., & Saenger, E. H. (2021). Digital rock physics: A geological driven workflow for the segmentation of anisotropic Ruhr sandstone.
Frontiers in Earth Science,
9, 673753.
https://doi.org/10.3389/feart.2021.673753
[20] Wang, H., Guo, R., Dalton, L. E., Crandall, D., Hosseini, S. A., Fan, M., & Chen, C. (2024). Comparative assessment of U-Net-based deep learning models for segmenting microfractures and pore spaces in digital rocks. SPE Journal, 29, 5779–5791. doi:
https://doi.org/10.2118/215117-PA
[21] Roslin, A., Marsh, M., Provencher, B., Mitchell, T. R., Onederra, I. A., & Leonardi, C. R. (2023). Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN), Part II: Semantic segmentation using a 2.5D CNN. Minerals Engineering, 195, 108027. doi:
https://doi.org/10.1016/j.mineng.2023.108027
[22] Palacio-Mancheno, P. E., Larriera, A. I., Doty, S. B., Cardoso, L., & Fritton, S. P. (2014). 3D assessment of cortical bone porosity and tissue mineral density using high-resolution µCT: Effects of resolution and threshold method. Journal of Bone and Mineral Research, 29(1), 142–150. doi:
https://doi.org/10.1002/jbmr.2012
[23] Li, Q., Ma, C., Zhang, C., Guo, Y., & Zhou, T. (2024). Study on the Microstructure and Permeability Characteristics of Tailings Based on CT Scanning Technology. Applied Sciences, 14(24), 12032. doi:
https://doi.org/10.3390/app142412032
[24] Chawshin, K., Berg, C. F., Varagnolo, D., & et al. (2022). Automated porosity estimation using CT-scans of extracted core data. Computational Geosciences, 26, 595–612. doi:
https://doi.org/10.1007/s10596-022-10143-9
[25] Kornilov, A., Safonov, I., & Yakimchuk, I. (2022). A Review of Watershed Implementations for Segmentation of Volumetric Images. Journal of Imaging, 8(5), 127. doi:
https://doi.org/10.3390/jimaging8050127
[26] Zhao, L., Zhang, H., Sun, X., Ouyang, Z., Xu, C., & Qin, X. (2024). Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks. Information, 15(12), 788. doi:
https://doi.org/10.3390/info15120788
[27] Wang, H., Yang, X., Zhou, C., Yan, J., Yu, J., & Xie, K. (2025). Constructions of multi-scale 3D digital rocks by associated image segmentation method. Frontiers in Earth Science, 12. doi:
https://doi.org/10.3389/feart.2024.1518561
[28] Kornilov, A. S., & Safonov, I. V. (2018). An Overview of Watershed Algorithm Implementations in Open Source Libraries. Journal of Imaging, 4(10), 123. doi:
https://doi.org/10.3390/jimaging4100123
[29] Yu, Q., Wang, G., Cheng, H., Guo, W., & Liu, Y. (2024). The segmentation and intelligent recognition of structural surfaces in borehole images based on the U2-Net network. PLOS ONE, 19(3), e0299471. doi:
https://doi.org/10.1371/journal.pone.0299471
[30] Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2022). Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3523–3542. doi:
https://doi.org/10.1109/TPAMI.2021.3059968
[33] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (Vol. 9351, pp. 234–241). Springer. doi:
https://doi.org/10.1007/978-3-319-24574-4_28
[34] Azad, R., Khodapanah Aghdam, E., Rauland, A., Jia, Y., Haddadi Avval, A., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2024). Medical image segmentation review: The success of U-Net. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12), 10076–10095. doi:
https://doi.org/10.1109/TPAMI.2024.3435571
[35] Aldi, F., Yuhandri, & Tajuddin, M. (2024). Enhanced U-Net architecture for glottis segmentation with VGG-16. Journal of Informatics and Visualization, 8(4), 2173–2180. doi:
https://doi.org/10.62527/joiv.8.4.3088
[36] Safarov, F., Khojamuratova, U., Komoliddin, M., Kurbanov, Z., Tamara, A., Nizamjon, I., Muksimova, S., & Cho, Y. I. (2025). Lightweight evolving U-Net for next-generation biomedical imaging. Diagnostics, 15(9), 1120. doi:
https://doi.org/10.3390/diagnostics15091120
[37] Alshawi, R., Hoque, M. T., & Flanagin, M. C. (2023). A Depth-Wise Separable U-Net Architecture with Multiscale Filters to Detect Sinkholes. Remote Sensing, 15(5), 1384. doi:
https://doi.org/10.3390/rs15051384
[38] Chandra, N., Sawant, S., & Vaidya, H. (2023). An efficient U-Net model for improved landslide detection from satellite images. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 91, 13–28. doi:
https://doi.org/10.1007/s41064-023-00232-4
[39] Mahmoudi, S., Asghari, O., & Boisvert, J. (2025). Addressing class imbalance in micro-CT image segmentation: A modified U-Net model with pixel-level class weighting. Computers & Geosciences, 196, 105853. doi:
https://doi.org/10.1016/j.cageo.2025.105853
[40] Sarsembayeva, T., Mansurova, M., Abdildayeva, A., & Serebryakov, S. (2025). Enhancing U-Net Segmentation Accuracy Through Comprehensive Data Preprocessing. Journal of Imaging, 11(2), 50. doi:
https://doi.org/10.3390/jimaging11020050
[41] Jin, Z., Li, X., Yang, H., Wu, B., & Zhu, X. (2023). Depthwise separable convolution U-Net for 3D seismic data interpolation. Frontiers in Earth Science, 10, 1005505. doi:
https://doi.org/10.3389/feart.2022.1005505
[43] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56), 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html
[44] Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. arXiv.
https://arxiv.org/abs/1411.4280
[47] Liang, J., Sun, Y., Lebedev, M., Gurevich, B., Nzikou, M., Vialle, S., & Glubokovskikh, S. (2022). Multi-mineral segmentation of micro-tomographic images using a convolutional neural network.
Computers & Geosciences,
168, 105217.
https://doi.org/10.1016/j.cageo.2022.105217