Performance assessment of structured and unstructured meshes in inversion of electrical resistivity and induced polarization surveys: Kabudan gold area, NE Iran

Document Type : Research Paper

Authors

Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.

10.22059/ijmge.2025.401349.595298

Abstract

This research investigates the inversion of electrical resistivity and induced polarization (IP) data acquired along geoelectrical profiles in the Kabudan gold prospect, Razavi Khorasan Province, northeastern Iran. To achieve higher modeling accuracy, two discretization schemes—structured quadrilateral meshes and unstructured triangular meshes—were implemented. The inversion results from both approaches were generally consistent and successfully depicted major subsurface geological features; however, the triangular mesh configuration achieved a lower RMS error and more effectively resolved fine-scale structural variations. Interpretation of the results delineated several geophysical anomalies, some of which showed strong agreement with drilling and assay data, most notably in borehole BH02. While resistivity models displayed the highest correlation with drill-core information, chargeability models provided complementary constraints for resolving sulfide-rich zones. Overall, the integration of geoelectrical survey results with drilling data proved to be a reliable approach for the detection of sulfide mineralization zones and for enhancing the resolution of subsurface structural interpretations.

Keywords

Main Subjects


[1] Dentith, M., & Mudge, S. T.; "Geophysics for the mineral exploration geoscientist", Cambridge University Press, 2014.
[2] Lenhare, B.D., Moreira, C.A., & Ilha, L.M.; ''Gold ore identification in Santa Catarina Gabbro using electrical resistivity tomography (ERT) and visualization of mineralization in three dimensions, São Sepé, Rio Grande do Sul, Brazil'', Geofísica internacional, 62(4): p. 591-606, 2023.
[3] Deo, R. N., & Kodikara, J.; "Direct current resistivity and time domain induced polarization methods in soil corrosivity assessment for buried infrastructure", Journal of Applied Geophysics, vol. 209, p. 104921, 2023.
[4] Kearey, P., Brooks, M., & Hill, I.; "An introduction to geophysical exploration", John Wiley & Sons, 2002.
[5] Mita, M., Glazer, M., Kaczmarzyk, R., Dąbrowski, M., & Mita, K.; "Case study of electrical resistivity tomography measurements used in landslides investigation, Southern Poland", Contemporary Trends in Geoscience, vol. 7, no. 1, pp. 110-126, 2018.
[6] Oldenburg, D. W., & Li, Y.; "Inversion for applied geophysics: A tutorial", 2005.
[7] Groves, D., & Foster, R.; ''Archaean lode gold deposits, in Gold metallogeny and exploration'', Springer, p. 63-103, 1991.
[8] Power, C., Tsourlos, P., Ramasamy, M., Nivorlis, A., & Mkandawire, M.; "Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada", Journal of Applied Geophysics, vol. 150, pp. 40-51, 2018.
[9] Dahlin, T., Leroux, V., & Nissen, J.; ''Measuring techniques in induced polarisation imaging'', Journal of Applied Geophysics, 50(3): p. 279-298, 2002.
[10] Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., & Wilkinson, P. B.; ''Recent developments in the direct-current geoelectrical imaging method'', Journal of applied geophysics, 95: p. 135-156, 2013.
[11] Rücker, C.; ''Advanced electrical resistivity modelling and inversion using unstructured discretization'', Universität Leipzig, PhD Thesis, 2011.
[12] Oldenburg, D.W., Li, Y., & Ellis, R.G.; ''Inversion of geophysical data over a copper gold porphyry deposit: A case history for Mt. Milligan'', Geophysics, 62(5): p. 1419-1431, 1997.
[13] Loke, M. H.; "Tutorial: 2-D and 3-D Electrical Imaging Surveys", Geotomo Software, Malaysia, 2011.
[14] Bala, G. A., Bery, A. A., Gnapragasan, J., & Akingboye, A. S.; "Development of novel resistivity-chargeability statistical relationships for subsurface characterization at Langkawi, Kedah", Environmental Science and Pollution Research, pp. 1-13, 2024.
[15] Erdoğan, E., Demirci, I., & Candansayar, M. E.; "Incorporating topography into 2D resistivity modeling using finite-element and finite-difference approaches", Geophysics, vol. 73, no. 3, pp. F135-F142, 2008.
[16] Akça, I., & Basokur, A. T.; "Extraction of structure-based geoelectric models by hybrid genetic algorithms", Geophysics, vol. 75, no. 1, pp. F15-F22, 2010.
[17] Demirci, I., Erdoğan, E., & Candansayar, M.E.; ''Two-dimensional inversion of direct current resistivity data incorporating topography by using finite difference techniques with triangle cells: Investigation of Kera fault zone in western Crete'', Geophysics, 77(1): p. E67-E75, 2012.
[18] Abedi, M.; "A focused and constrained 2D inversion of potential field geophysical data through Delaunay triangulation, a case study for iron-bearing targeting at the Shavaz deposit in Iran", Physics of the Earth and Planetary Interiors, vol. 309, p. 106604, 2020.
[19] Samouëlian, A., Cousin, I., Richard, G., Tabbagh, A., & Bruand, A.; ''Electrical resistivity imaging for detecting soil cracking at the centimetric scale'', Soil Science Society of America Journal, 67(5): p. 1319-1326, 2003.
[20] Biabani, A., Abedi, M., Norouzi, G.H., & Mojarab, M.; "Forward and inverse modeling of electrical resistivity geophysical data of a landslide surface discretized by unstructured mesh - A case study: Tehran-North Freeway", Journal of Radar Applications and Geoscience, vol. 8, no. 3, pp. 202-212, doi: 10.22044/jrag.2023.12148.1339, 2024.
[21] Damavandi, K., Abedi, M., Norouzi, G.H., & Mojarab, M.; "Geoelectrical modelling of a landslide surface through an unstructured mesh", Bulletin of Geophysics & Oceanography (BGO), vol. 63, no. 2, 2022.
[22] Mohammadi, A., Abedi, M., MirMohammadi, M. S., & Zarean, A.; "Electrical imaging of gold-bearing mineralization zones through 3D geophysical modeling", International Journal of Mining and Geo-Engineering, 2025.
[23] Stöcklin, J.; "Structural history and tectonics of Iran: a review", AAPG Bulletin, vol. 52, no. 7, pp. 1229-1258, 1968.
[24] Berberian, M., & King, G.; "Towards a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences, vol. 18, no. 2, pp. 210-265, 1981.
[25] Lindenberg, H. G., Corler, K., & Ibbeken, H.; "Stratigraphy, Structure and orogenetic evolution of Sabzevar zone in the area of Oryan Khorasan, NE Iran", GSI Report 51, Tehran, 1982.
[26] Muller, R., & Walter, R.; "Geology of the Precambrian-Paleozoic Taknar Inlier northwest of Kashmar, Khorasan Province northeast Iran", 1983.
[27] Ghasemi Siani, M., Mehrabi, B., & Gholizadeh, K.; "Geology, mineralogy and geochemistry of Kabudan Fe-rich volcanogenic ore mineralization, north of Bardaskan, Taknar zone," Earth science research (in Persian), pp. 253-272   , doi: 10.52547/esrj.10.4.253, 2020. 
[28] Azmi, H., Moarefvand, P., & Maghsoudi, A.; "Resource estimation of the Damanghor gold deposit, based on geology and grade continuity", Geopersia, vol. 10, no. 2, pp. 381-394, 2020.
[29] Hashemi, M., & Afzal, P.; "Identification of geochemical anomalies by using of number–size (N–S) fractal model in Bardaskan area, NE Iran", Arabian Journal of Geosciences, vol. 6, pp. 4785-4794, 2013.
[30] Hashemi, M., Afzal, P., Rasa, I., Noghreian, M., KhosroTehrani, K., & Vothoughi Abedini, M.; "Geochemical anomaly separation by concentration-area fractal model in Bardaskan area, NE Iran", Journal of Mining and Metallurgy, vol. 46, pp. 1-10, 2010.
[31] Hamami Pour, B., Tajeddin, H., & Barahmand, L.; "Geology and geochemistry of Sebandoon gold mine, north of Bardaskan: Example of epithermal gold mineralization in Ophiolitic host rocks", Conference: 18th Symposium of the Geological Society of Iran, 2014.
[32] Abbasnia, H., Karimpour, M., & Malekzadeh Shafaroudi, A.; "Damanghor intermediate sulfidation epithermal Au mineralization, Northern Bardaskan: geology, alteration, mineralization, and geochemistry", Iranian Journal of Crystallography and Mineralogy, vol. 27, no. 3, pp. 621-634, 2019.
[33] Oldenburg, D. W., Heagy, L., Haber, E., Cowan, D., & Shekhtman, R.; ''Fundamentals of Inversion'', University of British Columbia, 2015.
[34] Menke, W.; "Discrete Inverse Theory", Geophysical Data Analysis, vol. 289, 1989.
[35] Loke, M. H.; "Tutorial: 2-D and 3-D electrical imaging surveys", 2004.
[36] RES2DINV ver. 3.59 for Windows XP/Vista/7, Geoelectrical Imaging 2D & 3DGEOTOMO SOFTWARE, Geotomo Software,: Malaysia, 2010.
[37] Loke, M.H., & Dahlin, T.; ''A comparison of the Gauss–Newton and quasi-Newton methods in resistivity imaging inversion. Journal of applied geophysics'', 49(3): p. 149-162, 2002.
[38] deGroot-Hedlin, C., & Constable, S.; ''Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data'', Geophysics, 55(12): p. 1613-1624, 1990.
[39] Binley, A., & Slater, L.; "Resistivity and induced polarization: Theory and applications to the near-surface earth", Cambridge University Press, 2020.
[40] Binley, A., & Kemna, A.; ''DC resistivity and induced polarization methods, in Hydrogeophysics'', Springer. p. 12 156-9, 2005.
[41] Kemna, A., Räkers, E. & Binley, A.; "Application of complex resistivity tomography to field data from a kerosene-contaminated site", 3rd EEGS Meeting, European Association of Geoscientists & Engineers, pp. cp-95-00039, 1997.
[42] Mwakanyamale, K., Slater, L., Binley, A., & Ntarlagiannis, D.; "Lithologic imaging using complex conductivity: Lessons learned from the Hanford 300 Area", Geophysics, vol. 77, no. 6, pp. E397-E409, 2012.
[43] Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P. & Binley, A.; "ResIPy an Intuitive Open Source Software for Complex Geoelectrical Inversion", Modeling, Lancaster, 2020.
[44] Mostafaei, K., & Ramazi, H.; "Investigating the applicability of induced polarization method in ore modelling and drilling optimization: a case study from Abassabad, Iran," Near Surface Geophysics, vol. 17, no. 6-Recent Developments in Induced Polarization, pp. 637-652, 2019.