[1] Caineng, Z., Zhi, Y., Zhang, G., Lianhua, H., Rukai, Z., Shizhen, T., Xuanjun, Y., Wang, Y., Guo, Q., WANG, L., Haibin, B.I., 2014. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance. Pet Explor Dev. 41(1),14-30.
[2] Muther, T., Qureshi, H.A., Syed, F.I., Aziz, H., Siyal, A., Dahaghi, K., Negahban, S., 2022. Unconventional hydrocarbon resources: geological statistics, petrophysical characterization, and field development strategies. J Petrol Explor Prod Technol. 12, 1463-1488.
[3] Song, Y., Li, Z., Jiang, L., Hong, F., 2015. The concept and the accumulation characteristics of unconventional hydrocarbon resources. Pet Sci. 12(4), 563-572.
[4] Hamada, G.M., 2016. Comprehensive Evaluation and Development of Unconventional Hydrocarbon Reserves as Energy Resource. Petro and Envi Biotech., APEB-102.
[5] Heikal, S., 2008. Scope of Tight Gas Reservoir in Pakistan. Pakistan Petroleum Exploration & Production Companies Association (PPEPCA), Islamabad, Pakistan.
[6] Huang, T., Xie, B., Ran, Q., Zou, D., Zhong, G., 2015. Geophysical evaluation technology for shale gas reservoir: A case study in Silurian of Changning Area in Sichuan Basin. Energy Exploration & Exploitation 33 (3), 419-438.
[7] Kumar, D., Hoversten, M., 2012. Geophysical model response in a shale gas. 9th Biennial International Conference & Exposition on Petroleum Geophysics. Hyderabad, 1-7.
[8] Nazarenko, M.Y., Kondrasheva, N., Saltykova, S.N., 2018. Electrical Resistivity of Coal and Oil Shales. Coke and Chemistry 61(5), 184-187.
[9] Abedi, M., 2024. 2D Simulation of Shale Gas Reservoir through Z-Axis Tipper Electromagnetic Data. Journal of Petroleum Geomechanics 7 (4), 26-37.
[10] Senger, K., Birchall, T., Betlem, P., Ogata, K., Ohm, S., Olaussen, S., Paulsen, R.S., 2021. Resistivity of reservoir sandstones and organic rich shales on the Barents Shelf: Implications for interpreting CSEM data. Geoscience Frontiers 12 (6), 101063.
[11] Wang, C., Shi, Z., Yang, W., Wei, Y., Huang, M., 2022. High-resolution shallow anomaly characterization using cross-hole P-and S-wave tomography. Journal of Applied Geophysics 201, 104649.
[12] Silver, P. G., Daley, T. M., Niu, F., Majer, E.L., 2007. Active source monitoring of cross-well seismic travel time for stress-induced changes. Bulletin of the Seismological Society of America 97(1B), 281-293.
[13] Gritto, R., Daley, T.M., Myer, L.R., 2002. Joint cross well and single well seismic studies at Lost Hills, California. Geophysical Prospecting 52, LBNL-50651.
[14] Harris, J.M., 1988. Cross-well seismic measurements in sedimentary rocks. In SEG Technical Program Expanded Abstracts 1988 (pp. 147-150). Society of Exploration Geophysicists.
[15] Tucker, K. E., Harris, P. M., Nolen-Hoeksema, R.C., 1998. Geologic investigation of cross-well seismic response in a carbonate reservoir, McElroy field, west Texas. AAPG bulletin 82(8), 1463-1503.
[16] Cao, S., Greenhalgh, S., 1997. Cross‐well seismic tomographic delineation of mineralization in a hard‐rock environment. Geophysical Prospecting 45(3), 449-460.
[17] Becht, A., Bürger, C., Kostic, B., Appel, E., Dietrich, P., 2007. High-resolution aquifer characterization using seismic cross-hole tomography: An evaluation experiment in a gravel delta. Journal of Hydrology 336(1-2), 171-185.
[18] Zhdanov, M.S., 2009. Geophysical electromagnetic theory and methods (Vol. 43). Elsevier.
[19] Munoz, G., 2014. Exploring for geothermal resources with electromagnetic methods. Surveys in geophysics 35, 101-122.
[20] Ghanbarifar, S., Ghiasi, S. M., Hosseini, S. H., Abedi, M., Oskooi, B., Smirnov, M.Y., 2024. Geoelectrical image of the Sabalan geothermal reservoir from magnetotelluric studies. Journal of Applied Geophysics 224, 105359.
[21] Hosseini, S.H., Oskooi, B., Ghanbarifar, S., Ghiasi, S. M., Abedi, M., Smirnov, M.Y., 2024. 2D sharp boundary inversion to determine tectonic and geological features of geothermal fields through the magnetotelluric method: case study of the Mahallat reservoir in Iran. Bulletin of Geophysics and Oceanography 65 (3), 347-376.
[22] Wilt, M. J., Alumbaugh, D. L., Morrison, H. F., Becker, A., Lee, K. H., Deszcz-Pan, M., 1995. Crosswell electromagnetic tomography: System design considerations and field results. Geophysics 60(3), 871-885.
[23] Zhdanov, M.S., Yoshioka, K., 2003. Cross-well electromagnetic imaging in three dimensions. Exploration Geophysics 34(2), 34-40.
[24] Torres-Verdin, C., Habashy, T.M., 1993. Cross-well electromagnetic tomography. In 3rd International Congress of the Brazilian Geophysical Society (pp. cp-324). European Association of Geoscientists & Engineers.
[25] Nekut, A.G., 1995. Crosswell electromagnetic tomography in steel-cased wells. Geophysics 60(3), 912-920.
[26] Marsala, A. F., AlRuwaili, S., Ma, S. M., Modiu, S. L., Ali, Z., Donadille, J. M., Wilt, M., 2007. Crosswell electromagnetic tomography in Haradh field: modeling to measurements. In SPE Annual Technical Conference and Exhibition? (pp. SPE-110528). SPE.
[27] Alumbaugh, D.L., Morrison, H.F., 1995. Monitoring subsurface changes over time with cross‐well electromagnetic tomographyt1. Geophysical Prospecting 43(7), 873-902.
[28] Böhm, G., Brauchler, R., Nieto, D., Soncin, G., Baradello, L., Pivetta, M., Botti, F., 2011. Experimental correlations between geophysical and hydraulic parameters from different inversion procedures. In Near Surface 2011-17th EAGE European Meeting of Environmental and Engineering Geophysics (pp. cp-253). European Association of Geoscientists & Engineers.
[29] Carcione, J.M., Gei, D., Picotti, S., Michelini, A., 2012. Cross-hole electromagnetic and seismic modeling for CO2 detection and monitoring in a saline aquifer. Journal of Petroleum Science and Engineering 100, 162-172.
[30] Simakov, A., Vakulenko, S., Politcina, A., Ivanov, P., Rusakov, E., Marchenko, M., Shustov, N., 2020. Efficiency Evaluation of High-Resolution Seismic; Electrical Resistivity Tomography and Electromagnetic Surveys on Rivers, Based on Modelling Studies. In Engineering and Mining Geophysics 2020 (Vol. 2020, No. 1, pp. 1-12). European Association of Geoscientists & Engineers.
[31] Warren, I., Gasperikova, E., Pullammanappallil, S., Grealy, M., 2018. Mapping geothermal permeability using passive seismic emission tomography constrained by cooperative inversion of active seismic and electromagnetic data. In Proceedings of the 43rd Stanford Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA (pp. 12-14).
[32] Jia, B., Tsau, J. S., Barati, R., 2019. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel 236, 404-427.
[33] Janna, F., Le-Hussain, F., 2020. Effectiveness of modified CO2 injection at improving oil recovery and CO2 storage—Review and simulations. Energy Reports 6, 1922-1941.
[34] Abedini, A., Torabi, F., 2014. On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery. Fuel 124, 14-27.
[35] Iddphonce, R., Wang, J., Zhao, L., 2020. Review of CO2 injection techniques for enhanced shale gas recovery: Prospect and challenges. Journal of Natural Gas Science and Engineering 77, 103240.
[36] Arts, R., Eiken, O., Chadwick, A., Zweigel, P., Van der Meer, L., Zinszner, B., 2004. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy 29(9-10), 1383-1392.
[37] Mito, S., Xue, Z., Ohsumi, T., 2008. Case study of geochemical reactions at the Nagaoka CO2 injection site, Japan. International journal of greenhouse gas control, 2(3), 309-318.
[38] Michelini, A., 1995. An adaptive-grid formalism for traveltime tomography. Geophysical Journal International 121(2), 489-510.
[39] Carcione, J.M., 2007. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media. Elsevier.
[40] Carslaw, H.S., 1959. J. c. Jaeger. Conduction of heat in solids, 2.
[41] Oristaglio, M.L., Hohmann, G.W., 1984. Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach. Geophysics 49(7), 870-894.
[42] Tikhonov, A.N., & Arsenin, V.Y., 1977. Solutions of ill-posed problems. VH Winston & Sons.
[43] Li, Y., Oldenburg, D.W., 1996. 3-D inversion of magnetic data. Geophysics 61(2), 394-408.
[44] Li, Y., Oldenburg, D.W., 1998. 3-D inversion of gravity data. Geophysics, 63(1), 109-119.
[45] Fournier, D., Oldenburg, D.W., 2019. Inversion using spatially variable mixed ℓ p norms. Geophysical Journal International 218(1), 268-282.
[46] Bergmann, P., Schmidt-Hattenberger, C., Labitzke, T., Wagner, F. M., Flechsig, C., Rippe, D., & Ivanova, A. 2012. Surface-downhole electrical resistivity tomography applied to monitoring of CO₂ storage at Ketzin, Germany. Geophysics, 77(6), B253–B267.
https://doi.org/10.1190/geo2011-0515.1
[47] Lebedev, M., Pervukhina, M., Mikhaltsevitch, V., Dance, T., Bilenko, O., & Gurevich, B. 2013. An experimental study of acoustic responses on the injection of supercritical CO₂ into sandstones from the Otway Basin. Geophysics, 78(5), D393–D402 (article numbering varies by publisher site).
https://doi.org/10.1190/geo2012-0528.1
[48] Mikhaltsevitch, V., Lebedev, M., & Gurevich, B. 2014. A laboratory study of the elastic and anelastic properties of sandstone flooded with supercritical CO₂ at seismic frequencies. Energy Procedia, 63, 3055–3062.
https://doi.org/10.1016/j.egypro.2014.11.329
[49] NETL (National Energy Technology Laboratory). 2012. Monitoring, Verification, and Accounting (MVA) for geologic storage projects – Best Practices Manual (DOE/NETL-2012/1568). U.S. Department of Energy. (Reports Ketzin crosswell ERT increases up to ~200% over baseline.)
https://netl.doe.gov/sites/default/files/2018-10/BPM-MVA-2012.pdf
[50] Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., & Wagner, F. M. 2014. CO₂ migration monitoring by means of electrical resistivity tomography (ERT): Review on five years of operation of a permanent ERT system at the Ketzin pilot site. Energy Procedia, 63, 4366–4373.
https://doi.org/10.1016/j.egypro.2014.11.471
[51] Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., Wagner, F. M., Just, A., Flechsig, C., & Rippe, D. 2016. Permanent crosshole electrical resistivity tomography (ERT) as an established method for the long-term CO₂ monitoring at the Ketzin pilot site. International Journal of Greenhouse Gas Control, 52, 432–448.
https://doi.org/10.1016/j.ijggc.2016.07.021
[52] Shi, J.-Q., Xue, Z., & Durucan, S. 2007. Seismic monitoring and modelling of supercritical CO₂ injection into a water-saturated sandstone: Interpretation of P-wave velocity data. International Journal of Greenhouse Gas Control, 1(4), 473–480.
https://doi.org/10.1016/j.ijggc.2007.07.002
[53] Spetzler, J., Zelt, C. A., Xue, Z., & Würdemann, H. 2008. Time-lapse crosswell seismic tomography for monitoring CO₂ storage at Nagaoka, Japan. Geophysical Journal International, 172(1), 214–225. https://doi.org/10.1111/j.1365-246X.2007.03615.x
[54] Falcon-Suarez, I., North, L., Amalokwu, K., Delgado-Martin, J., Callow, B., Robert, K., & Sahoo, S. K. 2020. Electrical resistivity of Fontainebleau sandstone as a function of brine saturation: A comparative study. International Journal of Greenhouse Gas Control, 100, 103114.
https://doi.org/10.1016/j.ijggc.2020.103114.