Harnessing inorganic silica frameworks: hydrothermal synthesis of POSS nanocages for enhanced efficiency in silicon solar cells

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.

10.22059/ijmge.2025.396827.595268

Abstract

As global population growth and rising energy demands coincide with fossil fuel depletion and escalating environmental degradation, renewable energy sources, particularly solar energy, have become critically important. Silicon solar cells, expected to dominate the market for the next two decades, represent a primary solution. In contrast to conventional approaches focused on modifying the internal structure of silicon solar cells, this study employs a surface modification strategy using a hybrid inorganic, organic nanocoating, based on polyhedral oligomeric silsesquioxane (POSS), a nanocomposite featuring a silica (SiO2)-like inorganic cage core functionalized with organic amine groups. The silica-based POSS nanocomposite was synthesized via hydrothermal processing and characterized using Fourier Transform Infrared Spectroscopy (FT-IR). Ultraviolet–visible spectroscopy (UV-VIS) spectroscopy confirmed the coating's high optical transparency. Adhesion to the silicon substrate, assessed via pull-off testing, was moderate. Crucially, performance evaluation using a solar simulator demonstrated a 9.32% enhancement in solar cell efficiency following application of the silica-derived coating. This inorganic-enhanced surface modification presents a viable route for improving existing solar cell technology and contributing to global pollution reduction efforts.

Keywords

Main Subjects


[1] D.H. Vo, A.T. Vo, Renewable energy and population growth for sustainable development in the Southeast Asian countries, Energy, Sustainability and Society 11(1) (2021) 30.
[2] G.A. Jones, K.J. Warner, The 21st century population-energy-climate nexus, Energy Policy 93 (2016) 206-212.
[3] Y. Sun, Y. Jiang, H. Wei, Z. Zhang, S. Irshad, X. Liu, Y. Xie, Y. Rui, P. Zhang, Nano-enabled strategies for greenhouse gases emission mitigation: a comprehensive review, Nano Today 57 (2024) 102378.
[4] V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. Gomis, Climate change 2021: the physical science basis, Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change 2(1) (2021) 2391.
[5] S. Europe, Global market outlook for solar power 2023–2027, SolarPower Europe: Brussels, Belgium  (2023).
[6] M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao, Solar cell efficiency tables (version 62), Progress in Photovoltaics: Research and Applications 31(7) (2023) 651-663.
[7] T.M. Razykov, C.S. Ferekides, D. Morel, E. Stefanakos, H.S. Ullal, H.M. Upadhyaya, Solar photovoltaic electricity: Current status and future prospects, Solar energy 85(8) (2011) 1580-1608.
[8] J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulović, Pathways for solar photovoltaics, Energy & Environmental Science 8(4) (2015) 1200-1219.
[9] K. Alberi, J.J. Berry, J.J. Cordell, D.J. Friedman, J.F. Geisz, A.R. Kirmani, B.W. Larson, W.E. McMahon, L.M. Mansfield, P.F. Ndione, A roadmap for tandem photovoltaics, Joule 8(3) (2024) 658-692.
[10] M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.A. Malek, A. Nahar, Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation, Renewable and sustainable energy reviews 41 (2015) 284-297.
[11] A. Chatzipanagi, A. Jaeger-Waldau, S. LETOUT, A. MOUNTRAKI, B.J. GEA, A. GEORGAKAKI, E. INCE, A. SCHMITZ, Clean Energy Technology Observatory: Photovoltaics in the European Union-2024 status report on technology development, trends, value chains and markets,  (2022).
[12] M. Green, E. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57), Progress in photovoltaics: research and applications 29(1) (2021) 3-15.
[13] A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T.L. James, M. Woodhouse, A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs, Solar Energy Materials and Solar Cells 114 (2013) 110-135.
[14] B.V. Stefani, M. Kim, Y. Zhang, B. Hallam, M.A. Green, R.S. Bonilla, C. Fell, G.J. Wilson, M. Wright, Historical market projections and the future of silicon solar cells, Joule 7(12) (2023) 2684-2699.
[15] G.A. Barron-Gafford, M.A. Pavao-Zuckerman, R.L. Minor, L.F. Sutter, I. Barnett-Moreno, D.T. Blackett, M. Thompson, K. Dimond, A.K. Gerlak, G.P. Nabhan, Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands, Nature Sustainability 2(9) (2019) 848-855.
[16] S. Wei, Y. Chen, Z. Zeng, An unexpectedly large proportion of photovoltaic facilities installed on cropland, The Innovation Energy 2(1) (2025) 100070-1-100070-3.
[17] T. He, R. Yang, W. Xiao, Y. Ye, Y. Hu, Y. Chen, Z. Sun, K. Wang, W. Chen, M. Zhang, Trading Food for Energy? Global Evidence of Solar Projects Undermining Food Security,  (2024).
[18] K. Ghani, N. Kiomarsipour, M. Ranjbar, New high-efficiency protective coating containing glycidyl-POSS nanocage for improvement of solar cell electrical parameters, Journal of Nanostructures 9(1) (2019) 103-111.
[19] I. Jerman, A.Š. Vuk, M. Koželj, F. Švegl, B. Orel, Influence of amino functionalised POSS additive on the corrosion properties of (3-glycidoxypropyl) trimethoxysilane coatings on AA 2024 alloy, Progress in Organic Coatings 72(3) (2011) 334-342.