[1]. Abas, M., Jarona, M. M., & Mulyani, W. Effectiveness of Coconut Charcoal Shell Activated Carbon Filtration to Lower Fe in Cisterns Water: A Case Study in Arsopura, Keerom Regency, Papua.
[2]. Adeyemo, A. A., Adeoye, I. O., & Bello, O. S. (2017). Adsorption of dyes using different types of clay: a review. Applied Water Science, 7(2), 543–568. https://doi.org/10.1007/s13201-015-0322-y
[3]. Anawar, H. M. (2013). Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas. Physics and Chemistry of the Earth, Parts a/b/c, 58, 13-21.
[4]. Anifah, E., Ariani, I. K., & Tindaon, J. T. P. (2024). Adsorption of iron and manganese from acid mine drainage by Zalacca (Salacca zalacca) peel-activated carbon. Sustinere: Journal of Environment and Sustainability, 8(1), 44-53.
[5]. Bahadir, T., Bakan, G., Altas, L., & Buyukgungor, H. (2007). The investigation of lead removal by biosorption: An application at storage battery industry wastewaters. Enzyme and Microbial Technology, 41(1–2), 98–102. https://doi.org/10.1016/j.enzmictec.2006.12.007
[6]. Bernard, E., Jimoh, a, & Odigure, J. O. (2013). Potentially toxic elements (PTEs) Removal from Industrial Wastewater by Activated Carbon Prepared from Coconut Shell. Research Journal of Chemical Sciences, 3(8), 3–9.
[7]. Budianta, W. (2021). THe influence of mineralogical composition on the adsorption capacity of heavy metals solution by java natural clay, Indonesia. ASEAN Engineering Journal, 11(2), 64-76.
[8]. Cabrera, C., Gabaldón, C., & Marzal, P. (2005). Sorption characteristics of heavy metal ions by a natural zeolite. Journal of Chemical Technology and Biotechnology, 80(4), 477–481. https://doi.org/10.1002/jctb.1189
[9]. Chen, G., Ye, Y., Yao, N., Hu, N., Zhang, J., & Huang, Y. (2021). A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of cleaner production, 329, 129666.
[10]. Córdoba, F., & Sarmiento, A M. (2023, April 26). Biocorrosion of Carbon Steel under Controlled Laboratory Conditions. Multidisciplinary Digital Publishing Institute, 13(5), 598-598. https://doi.org/10.3390/min13050598
[11]. Diep, P., Mahadevan, R., & Yakunin, A F. (2018, October 29). Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Frontiers Media, 6. https://doi.org/10.3389/fbioe.2018.00157
[12]. Elboughdiri, N. (2020). The use of natural zeolite to remove potentially toxic elements (PTEs) Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1782623
[13]. Fadliah, F., Palit, C., Pratiwi, R., Aryanto, R., & Putri, T. W. (2023). Analysis the Effect of Activated Natural Zeolites for Fe Metal Adsorption. Walisongo Journal of Chemistry, 6(2), 143-148.
[14]. Jaber, L., Ihsanullah, I., Almanassra, I. W., Backer, S. N., Abushawish, A., Khalil, A. K. A., Alawadhi, H., Shanableh, A., & Atieh, M. A. (2022). Adsorptive Removal of Lead and Chromate Ions from Water by Using Iron-Doped Granular Activated Carbon Obtained from Coconut Shells. Sustainability (Switzerland), 14(17), 1–24. https://doi.org/10.3390/su141710877
[15]. Kadja, G., & Ilmi, M. M. (2019). Indonesia natural mineral for heavy metal adsorption: A review. Journal of Environmental Science and Sustainable Development, 2(2), 139-164.
[16]. Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475–493. https://doi.org/10.1016/j.jclepro.2017.03.082
[17]. Kennedy, K. K., Maseka, K. J., & Mbulo, M. (2018). Selected Adsorbents for Removal of Contaminants from Wastewater: Towards Engineering Clay Minerals. Open Journal of Applied Sciences, 08(08), 355–369. https://doi.org/10.4236/ojapps.2018.88027
[18]. Kerndorff, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44(11), 1701–1708. https://doi.org/10.1016/0016-7037(80)90221-5
[19]. Kuyucak, N. (1998, January 1). Mining, the environment and the treatment of mine effluents. Inderscience Publishers, 10(2), 315-315. https://doi.org/10.1504/ijep.1998.005151
[20]. M Kadja, G. T., & Mualliful Ilmi, M. (2019). Issue 2 Article 3 12-31-2019 Recommended Citation Recommended Citation Kadja. Journal of Environmental Science and Sustainable Development, 2(2), 139–164. https://scholarhub.ui.ac.id/jessdhttp://scholarhub.ui.ac.id/jessd
[21]. Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of potentially toxic elements (PTEs) from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1–2), 42–48. https://doi.org/10.1016/j.minpro.2009.02.005
[22]. Mukarrom, F., Pranoto, Karsidi, R., Gravitiani, E., Astuti, F., & Maharditya, W. (2020). The assessment of claystone, quartz and coconut shell charcoal for adsorbing potentially toxic elements (PTEs) ions in acid mine drainage. IOP Conference Series: Materials Science and Engineering, 858(1), 0–8. https://doi.org/10.1088/1757-899X/858/1/012040
[23]. Mulopo, J. (2015). Continuous pilot scale assessment of the alkaline barium calcium desalination process for acid mine drainage treatment. Journal of Environmental Chemical Engineering, 3(2), 1295–1302. https://doi.org/10.1016/j.jece.2014.12.001
[24]. Munawar, A., Mulyanto, D., & Asrifah, R. R. (2023). Equilibrium studies for the removal of manganese (Mn) from aqueous solution using natural zeolite from West Java, Indonesia. Journal of Degraded & Mining Lands Management, 10(2).
[25]. Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. Journal of Environmental Management, 146, 50–58. https://doi.org/10.1016/j.jenvman.2014.07.026
[26]. Ngure, V., Davies, T., Kinuthia, G., Sitati, N., Shisia, S., & Oyoo-Okoth, E. (2014). Concentration levels of potentially harmful elements from gold mining in Lake Victoria Region, Kenya: Environmental and health implications. Journal of Geochemical Exploration, 144(PC), 511–516. https://doi.org/10.1016/j.gexplo.2014.04.004
[27]. Nordstrom, D. K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Applied geochemistry, 26(11), 1777-1791.
[28]. Nursanto, E., & Pradise, M. (2021). Adsorption of Iron (Fe) Heavy Metal in Acid Mine Drainage from Coal Mining. RSF Conference Series: Engineering and Technology, 1(1), 500–509. https://doi.org/10.31098/cset.v1i1.421
[29]. Nwosu, F. O., Ajala, O. J., Owoyemi, R. M., & Raheem, B. G. (2018). Preparation and characterization of adsorbents derived from bentonite and kaolin clays. Applied Water Science, 8(7), 1–10. https://doi.org/10.1007/s13201-018-0827-2
[30]. Paradise, M., Nursanto, E., Nurkhamim, & Haq, S. R. (2022). Use of Claystone, Zeolite, and Activated Carbon As a Composite To Remove Potentially toxic elements (PTEs) From Acid Mine Drainage in Coal Mining. ASEAN Engineering Journal, 12(2), 75–81. https://doi.org/10.11113/aej.V12.16982
[31]. Pranoto, Martini, T., Astuti, F., & Maharditya, W. (2020). Test the Effectiveness and Characterization of Quartz Sand/Coconut Shell Charcoal Composite as Adsorbent of Manganese Heavy Metal. IOP Conference Series: Materials Science and Engineering, 858(1), 0–8. https://doi.org/10.1088/1757-899X/858/1/012041
[32]. Putra, A., Amalia, Z., Astuti, R. D. D., Swya, U. Q. P., & Annisa, R. (2024). Application of Kaolin Adsorbent on Fe (II) Metal Absorption in Water: Aplikasi Adsorben Kaolin pada Penyerapan Logam Fe (II) dalam Air. Chelo Journal of Technology for Community Service (CETICS), 1(2).
[33]. Rambabu, K., Banat, F., Pham, Q. M., Ho, S. H., Ren, N. Q., & Show, P. L. (2020). Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. https://doi.org/10.1016/j.ese.2020.100024
[34]. Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7(4), 387–419. https://doi.org/10.2166/wrd.2016.104
[35]. Sukmono, Y., Kristanti, R. A., Foo, B. V., & Hadibarata, T. (2024). Adsorption of Fe and Pb from Aqueous Solution using Coconut Shell Activated Carbon. Biointerface Res. Appl. Chem, 14, 30.
[36]. Rodríguez-Galán, M., Baena-Moreno, F. M., Vázquez, S., Arroyo-Torralvo, F., Vilches, L. F., & Zhang, Z. (2019). Remediation of acid mine drainage. Environmental Chemistry Letters, 17(4), 1529–1538. https://doi.org/10.1007/s10311-019-00894-w
[37]. Rodríguez, C., & Leiva, E. (2020). Enhanced heavy metal removal from acid mine drainagewastewater using double-oxidized multiwalled carbon nanotubes. Molecules, 25(1). https://doi.org/10.3390/molecules25010111
[38]. Scharnberg, A. R. A., de Loreto, A. C., & Alves, A. K. (2020). Optical and structural characterization of Bi2fexNbO7 nanoparticles for environmental applications. Emerging Science Journal, 4(1), 11–17. https://doi.org/10.28991/esj-2020-01205
[39]. Sidiq, H., & Purnomo, H. (2023). RELEASING COPPER AND MANGANESE HEAVY METAL IONS FROM ACID MINE DRAINAGE USING BONTANG CLAY: Keywords: Bontang clay, mine waste water, copper, manganese. Innofarm: Jurnal Inovasi Pertanian, 25(1).
[40]. Simate, G. S., & Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. Journal of Environmental Chemical Engineering, 2(3), 1785–1803. https://doi.org/10.1016/j.jece.2014.07.021
[41]. Somerville, R. (2007). Low-cost Adsorption Materials for Removal of Metals from Contaminated Water. 1, 74.
[42]. Tang, H., Luo, J., Zheng, L., Liu, C., Li, H., Wu, G., Zeng, M., & Bai, X. (2021, June 1). Characteristics of Pores in Coals Samples Exposedto Acid Mine Drainage. Research Square (United States). https://doi.org/10.21203/rs.3.rs-554654/v1
[43]. Tong, L., Fan, R., Yang, S., & Li, C. (2021). Development and Status of the Treatment Technology for Acid Mine Drainage. Mining, Metallurgy and Exploration, 38(1), 315–327. https://doi.org/10.1007/s42461-020-00298-3
[44]. Water, H. M. A. I. B. (2021). The Application Of Goat Bone Waste Activated Charcoal As Manganese Heavy Metal Absorbent In Borehole Water.
[45]. Wibowo, Y. G., Sahnur, M. T., Al-Aziza, P. S., Safitri, H., Anwar, D., Maryani, A. T., ... & Petrus, H. T. B. M. (2024). Zeolite functionalized with macroalgae as novel material for Fe and Mn removal from real acid mine drainage. Bioresource Technology Reports, 27, 101951.
[46]. Widyaningrum, S. R., Sarto, S., & Prasetya, A. (2022). Removal of Iron and Manganese in Acid Mine Drainage Using Natural Zeolite. Key Engineering Materials, 920, 81-87.
[47]. Yang, X., Zhang, H., Cheng, S., & Zhou, B. (2022). Optimization of the adsorption and removal of Sb(iii) by MIL-53(Fe)/GO using response surface methodology. RSC Advances, 12(7), 4101–4112. https://doi.org/10.1039/d1ra08169a
[48]. Yu, W., Lian, F., Cui, G., & Liu, Z. (2017, October 26). N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Elsevier BV, 193, 8-16. https://doi.org/10.1016/j.chemosphere.2017.10.134