1
Department of Geology, Ekiti State University, Ado-Ekiti, Nigeria.
2
Department of Geology, Kwara State University, Malete, Nigeria.
10.22059/ijmge.2025.370522.595137
Abstract
Numerous laboratory investigations have explored the properties of various rocks subjected to high temperatures rarely encountered in rock engineering applications. This study aims to investigate the variation in bulk density of fine-grained granite (FGG) under mild temperatures (20°C–200°C), relevant to rock engineering applications such as geothermal systems and radioactive waste storage. The objectives are to quantify changes in mass, volume, and bulk density of FGG samples and identify underlying mechanisms through microscopic analysis. Cylindrical core samples (50 mm diameter × 100 mm height) were extracted from a granite outcrop in Ado-Ekiti, southwestern Nigeria, using a core drilling machine, in accordance with ISRM standards. Mass and volume were measured before, during, and after heating at 20°C intervals up to 200°C in an electric oven. Bulk density was calculated using ISRM standards based on the measured mass and volume at selected mild temperature intervals. Results show a decrease in mass and an increase in volume with rising temperature, leading to a reduction in bulk density. The average percentage of mass loss, volume increase, and bulk density decrease was higher during heating than after cooling. In addition, microscopic analysis revealed a progressive increase in microcrack density, with distinct trans-granular cracks forming across feldspar grains at 200 °C. The findings reveal the potential impact of mild thermal exposure on granite’s structural integrity, which is relevant for rock engineering applications in environments subject to moderate thermal fluctuations.
Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., Shao, S., Chen, B. K., Lashin, A., … Rathnaweera, T. D. (2017). Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature conditions: An application to geothermal energy extraction. Geothermics, 65, 44–59. https://doi.org/10.1016/j.geothermics.2016.07.002
Xiao, Y., Yin, J., Hu, Y., Wang, J., Yin, H., & Qi, H. (2019). Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective. Sustainability 2019, Vol. 11, Page 217, 11(1), 217. https://doi.org/10.3390/SU11010217
Sun, F., Yao, Y., Chen, M., Li, X., Zhao, L., Meng, Y., … Feng, D. (2017). Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency. Energy, 125, 795–804. https://doi.org/10.1016/J.ENERGY.2017.02.114
Ranjith, P. G., Viete, D. R., Chen, B. J., & Perera, M. S. A. (2012). Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Engineering Geology, 151, 120–127.
Lintao, Y., Marshall, A. M., Wanatowski, D., Stace, R., & Ekneligoda, T. (2017). Effect of high temperatures on sandstone – a computed tomography scan study. https://doi.org/10.1680/jphmg.15.00031, 17(2), 75–90. https://doi.org/10.1680/JPHMG.15.00031
Ozguven, A., & Ozcelik, Y. (2014). Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Engineering Geology, 183, 127–136. https://doi.org/10.1016/j.enggeo.2014.10.006
Zhang, W., Sun, Q., Zhang, Y., Xue, L., & Kong, F. (2018). Porosity and wave velocity evolution of granite after high-temperature treatment: a review. Environmental Earth Sciences, 77(9), 350. https://doi.org/10.1007/s12665-018-7514-3
Zhu, Z., Tian, H., Chen, J., Jiang, G., Dou, B., Xiao, P., & Mei, G. (2020). Experimental investigation of thermal cycling effect on physical and mechanical properties of heated granite after water cooling. Bulletin of Engineering Geology and the Environment, 79(5), 2457–2465. https://doi.org/10.1007/s10064-019-01705-w
Chen, S., Yang, C., & Wang, G. (2017). Evolution of thermal damage and permeability of Beishan granite. Applied Thermal Engineering, 110, 1533–1542. https://doi.org/10.1016/j.applthermaleng.2016.09.075
Lintao, Y., Marshall, A. M., Wanatowski, D., Stace, R., & Ekneligoda, T. (2017). Effect of high temperatures on sandstone - a computed tomography scan study. International Journal of Physical Modelling in Geotechnics, 17(2), 75–90. https://doi.org/10.1680/jphmg.15.00031
Zhao, Z., Liu, Z., Pu, H., & Li, X. (2018). Effect of Thermal Treatment on Brazilian Tensile Strength of Granites with Different Grain Size Distributions. Rock Mechanics and Rock Engineering, 51(4), 1293–1303. https://doi.org/10.1007/s00603-018-1404-6
Zhu, Z., Tian, H., Jiang, G., & Dou, B. (2022). Effects of high temperature on rock bulk density. Geomechanics and Geoengineering, 17(2), 647–657. https://doi.org/10.1080/17486025.2020.1827169
Ferrero, A. M., & Marini, P. (2001). Technical note: Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mechanics and Rock Engineering, 34(1), 57–66. https://doi.org/10.1007/s006030170026
Glover, P. W. J., Baud, P., Darot, M., Meredith, P. G., Boon, S. A., LeRavalec, M., … Reuschlé, T. (1995). α/β phase transition in quartz monitored using acoustic emissions. Geophysical Journal International, 120(3), 775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x
Griffiths, L., Heap, M. J., Baud, P., & Schmittbuhl, J. (2017). Quantification of microcrack characteristics and implications for stiffness and strength of granite. International Journal of Rock Mechanics and Mining Sciences, 100, 138–150. https://doi.org/10.1016/j.ijrmms.2017.10.013
Mahanta, B., Singh, T. N., & Ranjith, P. G. (2016). Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Engineering Geology, 210, 103–114. https://doi.org/10.1016/j.enggeo.2016.06.008
Yin, T., Li, X., Cao, W., & Xia, K. (2015). Effects of Thermal Treatment on Tensile Strength of Laurentian Granite Using Brazilian Test. Rock Mechanics and Rock Engineering, 48(6), 2213–2223. https://doi.org/10.1007/s00603-015-0712-3
Tian, H., Kempka, T., Xu, N. X., & Ziegler, M. (2012). Physical properties of sandstones after high temperature treatment. Rock Mechanics and Rock Engineering, 45(6), 1113–1117. https://doi.org/10.1007/s00603-012-0228-z
Wong, L. N. Y., Zhang, Y., & Wu, Z. (2020). Rock strengthening or weakening upon heating in the mild temperature range? Engineering Geology, 272, 105619. https://doi.org/10.1016/j.enggeo.2020.105619
Zhang, L., Mao, X., & Lu, A. (2009). Experimental study on the mechanical properties of rocks at high temperature. Science in China, Series E: Technological Sciences, 52(3), 641–646. https://doi.org/10.1007/s11431-009-0063-y
Wong, L. N. Y., & Zhang, Y. H. (2019, June 23). Numerical Investigation of Micromechanisms of Thermal Strengthening in Rock. OnePetro. Retrieved from /ARMAUSRMS/proceedings-abstract/ARMA19/All-ARMA19/124676
Wadhams, N. (2011). Gold Standards: How miners dig for riches in a 2-mile-deep furnace. Wired, 19(3), 42.
Olasolo, P., Juárez, M. C., Morales, M. P., Damico, S., & Liarte, I. A. (2016). Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews, 56, 133–144. https://doi.org/10.1016/j.rser.2015.11.031
Hökmark, H., & Fälth, B. (2003). Thermal dimensioning of the deep repository-Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature.
Soppe, W. J., Donker, H., Celma, A. G., & Prij, J. (1994). Radiation-induced stored energy in rock salt. Journal of Nuclear Material, 217(1–2), 1–31. https://doi.org/https://doi.org/10.1016/0022-3115(94) 90301-8.
Yavuz, H., Demirdag, S., & Caran, S. (2010). Thermal effect on the physical properties of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 47(1), 94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014
Yang, S.-Q., Ranjith, P. G., Jing, H.-W., Tian, W.-L., & Ju, Y. (2017). An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 65, 180–197. https://doi.org/10.1016/j.geothermics.2016.09.008
Tian, H., Ziegler, M., & Kempka, T. (2014). Physical and mechanical behavior of claystone exposed to temperatures up to 1000 °C. International Journal of Rock Mechanics and Mining Sciences, 70, 144–153. https://doi.org/10.1016/j.ijrmms.2014.04.014
Wu, G., Wang, Y., Swift, G., & Chen, J. (2013). Laboratory Investigation of the Effects of Temperature on the Mechanical Properties of Sandstone. Geotechnical and Geological Engineering 2013 31:2, 31(2), 809–816. https://doi.org/10.1007/S10706-013-9614-X
Afolagboye, L. O. (2021). Using index tests to predict the compressive strength of crystalline rocks. Proceedings of the Institution of Civil Engineers - Construction Materials, 174(6), 289–297. https://doi.org/10.1680/jcoma.18.00061
Talabi, A. O., & Tijani, M. N. (2013). Hydrochemical and stable isotopic characterization of shallow groundwater system in the crystalline basement terrain of Ekiti area, southwestern Nigeria. Applied Water Science, 3(1), 229–245. https://doi.org/10.1007/s13201-013-0076-3
ISRM, (International Society for Rock Mechanics). (1978). Suggested method for petrographic description of rocks. Commission for standardization of laboratory and field tests. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(2), 43–45.
ISRM, (International Society for Rock Mechanics). (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In R. Ulusay & J. A. Hudson (Eds.), Suggested methods prepared by the commission on testing methods (p. 628). Ankara, Turkey: Kozan Ofset.
ISRM. (1981). ISRM suggested methods: rock characterization. In E. T. Brown (Ed.), Testing and monitoring. London: Pergamon.
Franklin, J. A. (1985). Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(2), 51–60. https://doi.org/10.1016/0148-9062(85)92327-7
IAEG. (1979). Classification of rocks and soils for engineering geological mapping part I: Rock and soil materials. Bulletin of the International Association of Engineering Geology, 19(1), 364–371. https://doi.org/10.1007/BF02600503
Afolagboye, L. O., Talabi, A. O., & Owoyemi, O. O. (2024). Slake Durability of Granitic Rocks in Wet and Dry Conditions. In M. Bezzeghoud, Z. A. Ergüler, J. Rodrigo-Comino, M. K. Jat, R. Kalatehjari, D. S. Bisht, … M. Gentilucci (Eds.), Recent Research on Geotechnical Engineering, Remote Sensing, Geophysics and Earthquake Seismology (pp. 65–68). Cham: Springer Nature Switzerland.
Afolagboye, L. O., Owoyemi, O. O., & Akinola, O. O. (2023). Effect of pH Condition and Different Solution on the Slake Durability of Granitic Rocks. Geotechnical and Geological Engineering, 41(2), 897–906. https://doi.org/10.1007/S10706-022-02312-5/METRICS
Cai, X., Zhou, Z., Liu, K., Du, X., & Zang, H. (2019). Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms. Applied Sciences 2019, Vol. 9, Page 4450, 9(20), 4450. https://doi.org/10.3390/APP9204450
Bell, F. G. (2007). Engineering geology (2nd ed.). Elsevier: Oxford.
Zhang, W., & Sun, Q. (2018). Identification of Primary Mineral Elements and Macroscopic Parameters in Thermal Damage Process of Limestone with Canonical Correlation Analysis. Rock Mechanics and Rock Engineering, 51(4), 1287–1292. https://doi.org/10.1007/s00603-018-1401-9
Jin, P., Hu, Y., Shao, J., Zhao, G., Zhu, X., & Li, C. (2019). Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics, 78(December 2018), 118–128. https://doi.org/10.1016/j.geothermics.2018.12.008
Zhang, W., Sun, Q., Hao, S., Geng, J., & Lv, C. (2016). Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Applied Thermal Engineering, 98, 1297–1304. https://doi.org/10.1016/J.APPLTHERMALENG.2016.01.010
Meng, Q. Bin, Wang, C. K., Liu, J. F., Zhang, M. W., Lu, M. M., & Wu, Y. (2020). Physical and micro-structural characteristics of limestone after high temperature exposure. Bulletin of Engineering Geology and the Environment, 79(3), 1259–1274. https://doi.org/10.1007/s10064-019-01620-0
Zhang, W., Qian, H., Sun, Q., & Chen, Y. (2015). Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environmental Earth Sciences, 74(7), 5739–5748. https://doi.org/10.1007/S12665-015-4591-4/METRICS
Yang, S. Q., Xu, P., Li, Y. B., & Huang, Y. H. (2017). Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics, 69, 93–109. https://doi.org/10.1016/J.GEOTHERMICS.2017.04.009
Gautam, P. K., Verma, A. K., Jha, M. K., Sharma, P., & Singh, T. N. (2018). Effect of high temperature on physical and mechanical properties of Jalore granite. Journal of Applied Geophysics, 159, 460–474. https://doi.org/10.1016/j.jappgeo.2018.07.018
Somerton, W. H. (1992). Thermal properties and temperature-related behavior of rock/fluid systems. Amsterdam: Elsevier.
Clark, S. P. (1966). Handbook of Physical Constants. The Geological Society of America , 97, 459–482. https://doi.org/10.1130/MEM97
Wu, G., Teng, N. G., & Wang, Y. (2011). Physical and mechanical characteristics of limestone after high temperature. Chinese Journal of Geotechnical Engineering, 33, 259–264.
Xu, X. L., Gao, F., & Zhang, Z. Z. (2014). Influence of confning pressure on deformation and strength properties of granite after high temperatures. Chinese Journal of Geotechnical Engineering, 36, 2246–2252.
Hu, J., Sun, Q., & Pan, X. (2018). Variation of mechanical properties of granite after high-temperature treatment. Arabian Journal of Geosciences, 11(2), 1–8. https://doi.org/10.1007/S12517-018-3395-8/METRICS
Zhu, Z. nan, Tian, H., Jiang, G. sheng, & Cheng, W. (2018). Effects of High Temperature on the Mechanical Properties of Chinese Marble. Rock Mechanics and Rock Engineering, 51(6), 1937–1942. https://doi.org/10.1007/S00603-018-1426-0/METRICS
Freire-Lista, D. M., Fort, R., & Varas-Muriel, M. J. (2016). Thermal stress-induced microcracking in building granite. Engineering Geology, 206, 83–93. https://doi.org/10.1016/J.ENGGEO.2016.03.005
Gómez-Heras, M., Smith, B. J., & Fort, R. (2006). Surface temperature differences between minerals in crystalline rocks: Implications for granular disaggregation of granites through thermal fatigue. Geomorphology, 78(3–4), 236–249. https://doi.org/10.1016/J.GEOMORPH.2005.12.013
Articles in Press, Accepted Manuscript Available Online from 17 September 2025
Afolagboye, L. O , Adedeji, A. , Owoyemi, O. O. and Abdu-Raheem, Y. O (2025). Variation in bulk density of granitic rock samples at mild temperature range. International Journal of Mining and Geo-Engineering, (), -. doi: 10.22059/ijmge.2025.370522.595137
MLA
Afolagboye, L. O, , Adedeji, A. , , Owoyemi, O. O. , and Abdu-Raheem, Y. O. "Variation in bulk density of granitic rock samples at mild temperature range", International Journal of Mining and Geo-Engineering, , , 2025, -. doi: 10.22059/ijmge.2025.370522.595137
HARVARD
Afolagboye, L. O, Adedeji, A., Owoyemi, O. O., Abdu-Raheem, Y. O (2025). 'Variation in bulk density of granitic rock samples at mild temperature range', International Journal of Mining and Geo-Engineering, (), pp. -. doi: 10.22059/ijmge.2025.370522.595137
CHICAGO
L. O Afolagboye , A. Adedeji , O. O. Owoyemi and Y. O Abdu-Raheem, "Variation in bulk density of granitic rock samples at mild temperature range," International Journal of Mining and Geo-Engineering, (2025): -, doi: 10.22059/ijmge.2025.370522.595137
VANCOUVER
Afolagboye, L. O, Adedeji, A., Owoyemi, O. O., Abdu-Raheem, Y. O Variation in bulk density of granitic rock samples at mild temperature range. International Journal of Mining and Geo-Engineering, 2025; (): -. doi: 10.22059/ijmge.2025.370522.595137