Extraction of nickel from spent reforming catalyst through bioleaching with mesophilic and moderately thermophilic cultures

Document Type : Research Paper

Authors

1 School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran.

2 Department of Materials Engineering, The University of British Columbia, Vancouver, Canada.

3 Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada.

10.22059/ijmge.2025.392984.595237

Abstract

Considering the strategic relevance of nickel in a variety of industries, it is crucial to discover a method for extracting it from secondary sources. Spent reforming catalysts are hazardous to the environment, and require proper waste management techniques. In this research, the extraction of nickel from spent catalysts was studied and it was discovered that this process can dissolve a significant amount of nickel. Due to the high calcite content in the sample, its dissolution led to an elevation in pH, which negatively impacted bioleaching. It was observed that when the sample was added to the bioleaching solution after bacterial growth, the pH of the solution elevated less, and recovery improved. Moderately thermophilic bacteria had a better capability to reduce the pH and showed 66% nickel recovery which was slightly higher than the 61% recovery observed with mesophilic bacteria. Leaching tests and XRD analysis revealed that the portion of the nickel that is in the NiO phase is resistant to conventional leaching or bioleaching treatment, but reducing the sample with H2 as the pretreatment process can enhance the recovery of nickel. Reductive pretreatment of the sample can improve recovery, however it is not advised since it may have adverse environmental implications. The toxicity assessment test revealed that the bioleaching process with both cultures is able to reduce the risk of catalyst waste.

Keywords

Main Subjects


[1]. Abdollahi, H., Saneie, R., Rahmanian, A., Ebrahimi, E., Mohammadzadeh, A., Shakiba, G., 2024. Biotechnological Applications in Spent Lithium-Ion Battery Processing BT  - Biotechnological Innovations in the Mineral-Metal Industry, in: Panda, S., Mishra, S., Akcil, A., Van Hullebusch, E.D. (Eds.), Springer International Publishing, Cham, pp. 79–109. https://doi.org/10.1007/978-3-031-43625-3_5
[2]. Abdollahi, H., Saneie, R., Shafaei, S.Z., Mirmohammadi, M., Mohammadzadeh, A., Tuovinen, O.H., 2021. Bioleaching of cobalt from magnetite-rich cobaltite-bearing ore. Hydrometallurgy 204, 105727. https://doi.org/10.1016/j.hydromet.2021.105727
[3]. Agrawal, A., Kumari, S., Parveen, M., Sahu, K.K., 2012. Exploitation of copper bleed stream for the extraction and recovery of copper and nickel by bis(2,4,4-trimethylpentyl)phosphinic acid. Miner. Process. Extr. Metall. Rev. 33, 339–351. https://doi.org/10.1080/08827508.2011.601481
[4]. Al-Thyabat, S., Nakamura, T., Shibata, E., Iizuka, A., 2013. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review. Miner. Eng. 45, 4–17. https://doi.org/https://doi.org/10.1016/j.mineng.2012.12.005
[5]. Alabdullah, M.A., Gomez, A.R., Vittenet, J., Bendjeriou-Sedjerari, A., Xu, W., Abba, I.A., Gascon, J., 2020. A Viewpoint on the Refinery of the Future: Catalyst and Process Challenges. ACS Catal. 10, 8131–8140. https://doi.org/10.1021/acscatal.0c02209
[6]. Alper, E., 1994. Petroleum Refining: Technology and Economics., Chemical Engineering Science. https://doi.org/10.1016/0009-2509(94)87025-x
[7]. Asghari, I., Mousavi, S.M., Amiri, F., Tavassoli, S., 2013. Bioleaching of spent refinery catalysts: A review. J. Ind. Eng. Chem. 19, 1069–1081. https://doi.org/10.1016/j.jiec.2012.12.005
[8]. Asimi Neisiani, A., Saneie, R., Mohammadzadeh, A., Wonyen, D.G., Chehreh Chelgani, S., 2023. Biodegradable hematite depressants for green flotation separation – An overview. Miner. Eng. https://doi.org/10.1016/j.mineng.2023.108114
[9]. Bharadwaj, A., Ting, Y.P., 2013. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. Bioresour. Technol. 130, 673–680. https://doi.org/10.1016/j.biortech.2012.12.047
[10]. Bosio, V., Viera, M., Donati, E., 2008. Integrated bacterial process for the treatment of a spent nickel catalyst. J. Hazard. Mater. 154, 804–810.
[11]. Chen, H.-R., Zhang, D.-R., Zhao, X.-J., Li, Q., Liang, Y.-T., Pakostova, E., Zhang, Y., Yang, Y.-B., 2023. Effects of Fe and cost-effective media composition on arsenopyrite bioleaching by Sulfobacillus thermosulfidooxidans. Chem. Eng. J. 474, 145845. https://doi.org/https://doi.org/10.1016/j.cej.2023.145845
[12]. Da Costa, G.M., Couto, D.J.F., De Castro, F.P.M., 2013. Existence of maghemite and trevorite in nickel laterites. Miner. Process. Extr. Metall. Rev. 34, 304–319. https://doi.org/10.1080/08827508.2012.657023
[13]. Ding, Y., Zhang, S., Liu, B., Zheng, H., Chang, C. chi, Ekberg, C., 2019. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 141, 284–298. https://doi.org/10.1016/j.resconrec.2018.10.041
[14]. Donati, E.R., Sand, W., 2007. Microbial Processing of Metal Sulfides, Microbial Processing of Metal Sulfides. Springer Netherlands, Dordrecht. https://doi.org/10.1007/1-4020-5589-7
[15]. Dusengemungu, L., Kasali, G., Gwanama, C., Mubemba, B., 2021. Overview of fungal bioleaching of metals. Environ. Adv. 5, 100083. https://doi.org/https://doi.org/10.1016/j.envadv.2021.100083
[16]. Ferella, F., Innocenzi, V., Maggiore, F., 2016. Oil refining spent catalysts: A review of possible recycling technologies. Resour. Conserv. Recycl. 108, 10–20. https://doi.org/10.1016/j.resconrec.2016.01.010
[17]. Garole, D.J., Hossain, R., Garole, V.J., Sahajwalla, V., Nerkar, J., Dubal, D.P., 2020. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities. ChemSusChem 13, 3079–3100. https://doi.org/10.1002/cssc.201903213
[18]. Gerayeli, F., Ghojavand, F., Mousavi, S.M., Yaghmaei, S., Amiri, F., 2013. Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Sep. Purif. Technol. 118, 151–161. https://doi.org/10.1016/j.seppur.2013.06.033
[19]. Guo, L., Zhang, L., Andersson, J., Ojo, O., 2022. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review. J. Mater. Sci. Technol. 120, 227–252. https://doi.org/https://doi.org/10.1016/j.jmst.2021.10.056
[20]. Hira, M., Yadav, S., Morthekai, P., Linda, A., Kumar, S., Sharma, A., 2018. Mobile Phones—An asset or a liability: A study based on characterization and assessment of metals in waste mobile phone components using leaching tests. J. Hazard. Mater. 342, 29–40. https://doi.org/10.1016/j.jhazmat.2017.08.008
[21]. Karim, S., Ting, Y.P., 2023. A novel sequential pretreatment coupled with statistically optimized bioleaching for highly effective biorecovery of platinum group metals from spent catalyst waste. J. Environ. Chem. Eng. 11, 110987. https://doi.org/10.1016/j.jece.2023.110987
[22]. Kendall, M.G., 1938. A New Measure of Rank Correlation. Biometrika 30, 81–93. https://doi.org/10.1093/biomet/30.1-2.81
[23]. Khodadadmahmoudi, G., Abdollahi, H., Mohammadzadeh, A., Saneie, R., Mirmohammadi, M., Rezaei, A., Jozanikohan, G., Naderi, H., 2022. Green extraction of nickel and valuable metals from pyrrhotite samples with different crystallographic structures through acidophilic bioleaching. J. Environ. Manage. 317, 115394. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115394
[24]. Kim, D.J., Pradhan, D., Ahn, J.G., Lee, S.W., 2010. Enhancement of metals dissolution from spent refinery catalysts using adapted bacteria culture - Effects of pH and Fe(II). Hydrometallurgy 103, 136–143. https://doi.org/10.1016/j.hydromet.2010.03.010
[25]. Kolbadinejad, S., Ghaemi, A., 2023. Recovery and extraction of platinum from spent catalysts: A review. Case Stud. Chem. Environ. Eng. 7, 100327. https://doi.org/10.1016/j.cscee.2023.100327
[26]. Kortum, D.J., 2010. Federal Register. Fed. Regist. 75, 73935–74604.
[27]. Kumar, P.S., Yaashikaa, P.R., 2020. Recent trends and challenges in bioleaching technologies, Biovalorisation of Wastes to Renewable Chemicals and Biofuels. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817951-2.00020-1
[28]. Lee, J.Y., Rao, S.V., Kumar, B.N., Kang, D.J., Reddy, B.R., 2010. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation. J. Hazard. Mater. 176, 1122–1125. https://doi.org/10.1016/j.jhazmat.2009.11.137
[29]. Liu, C., Lin, J., Cao, H., Zhang, Y., Sun, Z., 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.04.304
[30]. Lv, W., Xin, Y., Elliott, R., Song, J., Lv, X., Barati, M., 2021. Drying Kinetics of a Philippine Nickel Laterite Ore by Microwave Heating. Miner. Process. Extr. Metall. Rev. 42, 46–52. https://doi.org/10.1080/08827508.2020.1801433
[31]. Marafi, M., Stanislaus, A., 2008. Spent hydroprocessing catalyst management: A review. Part II. Advances in metal recovery and safe disposal methods. Resour. Conserv. Recycl. 53, 1–26. https://doi.org/10.1016/j.resconrec.2008.08.005
[32]. Meshram, P., Abhilash, Pandey, B.D., 2019. Advanced Review on Extraction of Nickel from Primary and Secondary Sources. Miner. Process. Extr. Metall. Rev. 40, 157–193. https://doi.org/10.1080/08827508.2018.1514300
[33]. Mishra, D., Kim, D.J., Ralph, D.E., Ahn, J.G., Rhee, Y.H., 2008. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. J. Hazard. Mater. 152, 1082–1091. https://doi.org/10.1016/j.jhazmat.2007.07.083
[34]. Mohammadzadeh, A., Abdollahi, H., Gharabaghi, M., Saneie, R., Mirmohammadi, M., 2023. Column Bioleaching of Nickel from Sulfidic Samples with Different Nickel and Magnesium Content. Geomicrobiol. J. 1–11. https://doi.org/10.1080/01490451.2023.2243930
[35]. Moosakazemi, F., Tavakoli Mohammadi, M.R., Zakeri, M., Esmaeili, M.J., Rafiei, H., 2020. Development of an environmentally friendly flowsheet for the hydrometallurgical recovery of nickel and aluminum from spent methanation catalyst. J. Clean. Prod. 244, 118731. https://doi.org/10.1016/j.jclepro.2019.118731
[36]. Pathak, A., Healy, M.G., Morrison, L., 2018. Changes in the fractionation profile of Al, Ni, and Mo during bioleaching of spent hydroprocessing catalysts with Acidithiobacillus ferrooxidans. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 53, 1006–1014. https://doi.org/10.1080/10934529.2018.1471033
[37]. Pathak, A., Srichandan, H., Kim, D.J., 2019. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment. J. Environ. Manage. 242, 372–383. https://doi.org/10.1016/j.jenvman.2019.04.081
[38]. Pichugina, N.M., Kutepov, A.M., Gorichev, I.G., Izotov, A.D., Zajtsev, B.E., 2002. Dissolution kinetics of nickel(II) and nickel(III) oxides in acid media. Teor. Osn. Khimicheskoi Tekhnologii 36, 533–544.
[39]. Rizki, I.N., Tanaka, Y., Okibe, N., 2019. Thiourea bioleaching for gold recycling from e-waste. Waste Manag. 84, 158–165. https://doi.org/10.1016/j.wasman.2018.11.021
[40]. Rohwerder, T., Gehrke, T., Kinzler, K., Sand, W., 2003. Bioleaching review part A. Appl. Microbiol. Biotechnol. 63, 239–248. https://doi.org/10.1007/s00253-003-1448-7
Sahu, K.K., Agarwal, A., Pandey, B.D., 2005. Nickel recovery from spent nickel catalyst. Waste Manag. Res. 23, 148–154. https://doi.org/10.1177/0734242X05052334
[41]. Saneie, R., Abdollahi, H., Ghassa, S., Azizi, D., Chehreh Chelgani, S., 2022. Recovery of Copper and Aluminum from Spent Lithium-Ion Batteries by Froth Flotation: A Sustainable Approach. J. Sustain. Metall. 8, 386–397. https://doi.org/10.1007/s40831-022-00493-0
[42]. Saneie, R., Abdollahi, H., Shafaei, S.Z., Mohammadzadeh, A., 2021. Inhibitory Effect of Solvent Extractants on Growth and Metabolism of Acidophiles. Miner. Process. Extr. Metall. Rev. 1–12. https://doi.org/10.1080/08827508.2021.1971664
[43]. Santhiya, D., Ting, Y.-P., 2005. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J. Biotechnol. 116, 171–184.
[44]. Shao, Q., Lyu, B., Yuan, J., Wang, X., Ke, M., Zhao, P., 2021. Shear thickening polishing of the concave surface of high-temperature nickel-based alloy turbine blade. J. Mater. Res. Technol. 11, 72–84. https://doi.org/https://doi.org/10.1016/j.jmrt.2020.12.112
[46]. Sharma, M., Bisht, V., Singh, B., Jain, P., Mandal, A.K., Lal, B., Sarma, P.M., 2015. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM-11478. Indian J. Exp. Biol. 53, 388–394.
[47]. Srichandan, H., Kim, D.J., Gahan, C.S., Akcil, A., 2013. Microbial extraction metal values from spent catalyst: Mini review. Adv. Biotechnol. 225–239.
[48]. Srichandan, H., Singh, S., Pathak, A., Kim, D.J., Lee, S.W., Heyes, G., 2014. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: Effect of particle size. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 49, 807–818. https://doi.org/10.1080/10934529.2014.882211
[49]. Su, K., Wang, F., Parianos, J., Cui, Z., Zhao, B., Ma, X., 2022. Alternative Resources for Producing Nickel Matte - Laterite Ores and Polymetallic Nodules. Miner. Process. Extr. Metall. Rev. 43, 584–597. https://doi.org/10.1080/08827508.2021.1910509
[50]. Tayar, S.P., Yeste, M.P., Ramírez, M., Cabrera, G., Bevilaqua, D., Gatica, J.M., Vidal, H., Cauqui, M.Á., Cantero, D., 2020. Nickel recycling through bioleaching of a Ni/Al2O3 commercial catalyst. Hydrometallurgy 195, 105350. https://doi.org/10.1016/j.hydromet.2020.105350
[51]. Tran, T.T., Moon, H.S., Lee, M.S., 2022. Separation of Cobalt, Nickel, and Copper from Synthetic Metallic Alloy by Selective Dissolution with Acid Solutions Containing Oxidizing Agent. Miner. Process. Extr. Metall. Rev. 43, 313–325. https://doi.org/10.1080/08827508.2020.1858079
[52]. Trinh, H.B., Lee, Jae chun, Suh, Y. jae, Lee, Jaeryeong, 2020. A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy. Waste Manag. 114, 148–165. https://doi.org/10.1016/j.wasman.2020.06.030
[53]. Wang, W., Zhang, L., Han, Y., Zhang, Y., Liu, X., Xu, S., 2019. Cleaner recycling of spent Ni–Mo/γ-Al2O3 catalyst based on mineral phase reconstruction. J. Clean. Prod. 232, 266–273. https://doi.org/10.1016/j.jclepro.2019.05.375
[54]. Yadollahi, A., Abdollahi, H., Dolati, F., Mirmohammadi, M., Magdouli, S., 2021. Bioresource Technology Reports Bio-oxidation behavior of pyrite , marcasite , pyrrhotite , and arsenopyrite by sulfur- and iron-oxidizing acidophiles. Bioresour. Technol. Reports 15, 100699. https://doi.org/10.1016/j.biteb.2021.100699
[55]. Nazemi, M.K., Rashchi, F., 2012. Recovery of nickel from spent NiO/Al2O3 catalyst through sulfuric acid leaching, precipitation and solvent extraction. Waste Management & Research, 30(5), 492-497. http://doi.org/10.1177/07342X11417984