Comparing the effectiveness of some modern boundary determination methods in interpreting the geology structures of the Tuan Giao area

Document Type : Research Paper

Authors

University of Economics, Technology for Industries, Hai Ba Trung, Hanoi, Vietnam.

10.22059/ijmge.2025.392402.595229

Abstract

Accurate horizontal boundary definition is essential in geophysical exploration, as it helps delineate subsurface formations and understand tectonic activities. Traditional boundary determination methods often face challenges in resolution and accuracy, necessitating the development of improved techniques. Recently, a range of edge detection techniques has been developed based on derivatives of the field. This study compares the performance of several recently developed edge identification methods, including improvised logistics of the total horizontal gradient, improvised tilt angle of the horizontal gradient, enhanced version of the horizontal tilt angle, the total horizontal gradient of ImpTDX, Gompertz function, and improved edge detector. These methods are evaluated by using synthetic models and Bouguer gravity data from the Tuan Giao area, Vietnam. The result shows that the regional structures tend mainly in the NW-SE direction, and some structures in the NE-SW direction.

Keywords

Main Subjects


[1] Cordell, L., and V.J.S. Grauch. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. The utility of regional gravity and magnetic anomaly maps, 16,181–197. https://doi.org/10.1190/1.0931830346.ch16
[2] Roest, W.R.J., J. Verhoef, and M. Pilkington. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1),116–125. https://doi.org/10.1190/1.1443174
[3] Miller, H.G., and V. Singh. (1994). Potential field tilt: A new concept for location of potential field sources. Journal of Applied Geophysics, 32,213–217. https://doi.org/10.1016/0926-9851(94)90022-1
[4] Pham, L.T., T.V. Vu, S. Le-Thi, and P.T. Trinh. (2020). Enhancement of potential field source boundaries using an improved logistic filter. Pure and Applied Geophysics, 177 (11), 5237–5249. https://doi.org/10.1007/s00024-020-02542-9
[5] Pham, L.T., S.P., Oliveira, L.D., Luu, and L.T. Do. (2025). Enhancing potential fields using stable downward continuation and boundary filters: Application to the Central Highlands, Vietnam. Vietnam Journal of Earth Sciences, 47(2), 1-16. https://doi.org/10.15625/2615-9783/22702.
[6] Aprina, P.U., D. Santoso, S. Alawiyah, N. Prasetyo, and K. Ibrahim. (2024). Delineating geological structure utilizing integration of remote sensing and gravity data: a study from Halmahera, North Molucca, Indonesia. Vietnam Journal of Earth Sciences 46 (2), 147–68. https://doi.org/10.15625/2615-9783/20010.
[7] Cooper, G.R.J., and D.R. Cowan. (2006). Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32(10),1585–1591. https://doi.org/10.1016/j.cageo.2006.02.016
[8] Ferreira, F.J.F., J. de Souza, A. de BeS Bongiolo, and L.G. de Castro. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3),J33–J41. https://doi.org/10.1190/geo2011-0441.1
[9] Cooper, G.R.J. (2014). Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics, 79,J55–J60. https://doi.org/10.1190/geo2013-0319.1
[10] Chen, A.G., T.F. Zhou, D.J. Liu, and S. Zhang. (2017). Application of an enhanced theta-based filter for potential field edge detection: A case study of the Luzong ore district. Chinese Journal of Geophysics, 60(2),203–218. https://doi.org/10.6038/cjg20170228
[11] Melouah, O., and L.T. Pham. (2021). An improved ILTHG method for edge enhancement of geological structures: Application to gravity data from the Oued Righ valley. Journal of African Earth Sciences, 177,104162. https://doi.org/10.1016/j.jafrearsci.2021.104162
[12] Pham, L.T. (2021). A high-resolution edge detector for interpreting potential field data: A case study from the Witwatersrand basin, South Africa. Journal of African Earth Sciences, 178,104190. https://doi.org/10.1016/j.jafrearsci.2021.104190
[13] Prasad, K.N.D., L.T. Pham, A.P. and Singh. (2022). A novel filter “ImpTAHG” for edge detection and a case study from Cambay Rift Basin, India. Pure and Applied Geophysics, 179(6–7),2351–2364. https://doi.org/10.1007/s00024-022-03059-z
[14] Ibraheem, I.M., B. Tezkan, H. Ghazala, and A.A. Othman. (2023). A new edge enhancement filter for the interpretation of magnetic field data. Pure and Applied Geophysics, 180,2223–2240. https://doi.org/10.1007/s00024-023-03249-3
[15] Alvandi, A., and V.E. Ardestani. (2023). Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics & Oceanography, 64(3),279–300. https://doi.org/10.4430/bgo00420
[16] Pham, L.T. (2024). An improved edge detector for interpreting potential field data. Earth Science Informatics, 17(3),2763–2774. https://doi.org/10.1007/s12145-024-01286-7
[17] Nasuti, Y., and A. Nasuti. (2018). NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies. Geophysical Journal International, 214(1),36–45. https://doi.org/10.1093/gji/ggy117
[18] Nasuti, Y., A. Nasuti, and D. Moghadas. (2019). STDR: A novel approach for enhancing and edge detection of potential field data. Pure and Applied Geophysics, 176(2),827–841. https://doi.org/10.1007/s00024-018-2016-5
[19] Pham, L.T., E. Oksum, and T.D. Do. (2019). Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica et Geophysica, 54(1),143–155. https://doi.org/10.1007/s40328-019-00248-6
[20] Kafadar, Ö. (2022). Applications of the Kuwahara and Gaussian filters on potential field data. Journal of Applied Geophysics, 198,104583. https://doi.org/10.1016/j.jappgeo.2022.104583
[21] Prasad, K.N.D., L.T. Pham, and A.P. Singh. (2022). Structural mapping of potential field sources using BHG filter. Geocarto International, 37(26),11253–11280. https://doi.org/10.1080/10106049.2022.2048903
[22] Prasad, K.N.D., L.T. Pham, A.P. Singh, A.M. Eldosouky, K. Abdelrahman, M.S. Fnais, and D. Gómez-Ortiz. (2022). A novel enhanced total gradient (ETG) for interpretation of magnetic data. Minerals, 12(11),1468. https://doi.org/10.3390/min12111468
[23] Alvandi, A., K. Su, H. Ai, V.E. Ardestani, and C. Lyu. (2023). Enhancement of potential field source boundaries using the hyperbolic domain (Gudermannian function). Minerals, 13(10),1312. https://doi.org/10.3390/min13101312
[24] Alvandi, A., V.E. Ardestani, and S.H. Motavalli-Anbaran. (2024). A novel method for interpreting potential field anomalies using the Rootsig function. International Journal of Mining and Geo-Engineering. https://doi.org/10.22059/ijmge.2024.382962.595198
[25] Ai, H., H. Deniz Toktay, A. Alvandi, R. Pašteka, K. Su, and Q. Liu. (2024). Advancing potential field data analysis: the modified horizontal gradient amplitude method (MHGA). Contributions to Geophysics and Geodesy, 54(2),119–143. https://doi.org/10.31577/congeo.2024.54.2.1
[26] Ai, H., Y.L. Ekinci, A. Alvandi, H. Deniz Tokta, C. Balkaya, and A. Roy. (2024). Detecting edges of geologic sources from gravity or magnetic anomalies through a novel algorithm based on hyperbolic tangent function. Turkish Journal of Earth Sciences, 33(6),684-701. https://doi.org/10.55730/1300-0985.1936
[27] Kafadar, Ö., and E. Oksum. (2024). Enhanced dip angle map using Kuwahara and Gaussian filters: An example from Burdur region. Turkish Journal of Earth Sciences, 33(4),395–406. https://doi.org/10.55730/1300-0985.1919
[28] Pham, L.T., S.P. Oliveira, M. Le-Huy, D.V. Nguyen, T.Q. Nguyen-Dang, T.D. Do, K.V. Tran, T.N. Hong-Duyen, T.N. To-Nhu, and H.Q. Pham. (2024). Reliable Euler deconvolution solutions of gravity data throughout the β-VDR and THGED methods: Application to mineral exploration and geological structural mapping. Vietnam Journal of Earth Sciences, 46(3),432–448. https://doi.org/10.15625/2615-9783/21009
[29] Tuyen, N.H., P.V. Phach, R.B. Shakirov, C.D. Trong, P.N. Hung, and L.D. Anh. (2018). Geoblocks recognition and delineation of the earthquake-prone areas in the Tuan Giao area (Northwest Vietnam). Geotectonics, 52,359–381. https://doi.org/10.1134/S001685211803007X
[30] Koszowska, E., A. Wolska, W. Zuchiewicz, N.Q. Cuong, and Z. Pécskay. (2007). Crustal contamination of Late Neogene basalts in the Dien Bien Phu Basin, NW Vietnam: Some insights from petrological and geochronological studies. Journal of Asian Earth Sciences, 29(1),1–17. https://doi.org/10.1016/j.jseaes.2005.12.003
[31] Rao, D.B., M.J. Prakash, N. Ramesh Babu. (1990). 3-D and 2 1/2-D modeling of gravity anomalies with variable density contrast. Geophysical Prospecting, 38,411–422. https://doi.org/10.1111/j.1365-2478.1990.tb01854.x.
[32] Pham, L.T. (2023). A novel approach for enhancing potential fields: application to aeromagnetic data of the Tuangiao, Vietnam. The European Physical Journal Plus, 138, 1134. https://doi.org/10.1140/epjp/s13360-023-04760-1
[33] Pham, L.T., S.P. Oliveira, C.V.S. Le, N.T. Bui, A.H. Vu, and D.A. Nguyen. (2023). Gravity data enhancement using the exponential transform of the tilt angle of the horizontal gradient. Minerals, 13(12),1539. https://doi.org/10.3390/min13121539
[34] Pham, L.T. (2020). A comparative study on different methods for calculating gravity effect of an uneven layer: Application to computation of Bouguer gravity anomaly in the East Vietnam Sea and adjacent areas. VNU Journal of Science: Mathematics - Physics, 36(3),106–114. https://doi.org/10.25073/2588-1124/vnumap.4515