[1] Cordell, L., and V.J.S. Grauch. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico. The utility of regional gravity and magnetic anomaly maps, 16,181–197.
https://doi.org/10.1190/1.0931830346.ch16
[2] Roest, W.R.J., J. Verhoef, and M. Pilkington. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1),116–125.
https://doi.org/10.1190/1.1443174
[4] Pham, L.T., T.V. Vu, S. Le-Thi, and P.T. Trinh. (2020). Enhancement of potential field source boundaries using an improved logistic filter. Pure and Applied Geophysics, 177 (11), 5237–5249. https://doi.org/10.1007/s00024-020-02542-9
[5] Pham, L.T., S.P., Oliveira, L.D., Luu, and L.T. Do. (2025). Enhancing potential fields using stable downward continuation and boundary filters: Application to the Central Highlands, Vietnam. Vietnam Journal of Earth Sciences, 47(2), 1-16. https://doi.org/10.15625/2615-9783/22702.
[6] Aprina, P.U., D. Santoso, S. Alawiyah, N. Prasetyo, and K. Ibrahim. (2024). Delineating geological structure utilizing integration of remote sensing and gravity data: a study from Halmahera, North Molucca, Indonesia. Vietnam Journal of Earth Sciences 46 (2), 147–68. https://doi.org/10.15625/2615-9783/20010.
[8] Ferreira, F.J.F., J. de Souza, A. de BeS Bongiolo, and L.G. de Castro. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics
, 78(3),J33–J41.
https://doi.org/10.1190/geo2011-0441.1
[9] Cooper, G.R.J. (2014). Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics, 79,J55–J60.
https://doi.org/10.1190/geo2013-0319.1
[10] Chen, A.G., T.F. Zhou, D.J. Liu, and S. Zhang. (2017). Application of an enhanced theta-based filter for potential field edge detection: A case study of the Luzong ore district. Chinese Journal of Geophysics, 60(2),203–218.
https://doi.org/10.6038/cjg20170228
[11] Melouah, O., and L.T. Pham. (2021). An improved ILTHG method for edge enhancement of geological structures: Application to gravity data from the Oued Righ valley. Journal of African Earth Sciences, 177,104162.
https://doi.org/10.1016/j.jafrearsci.2021.104162
[12] Pham, L.T. (2021). A high-resolution edge detector for interpreting potential field data: A case study from the Witwatersrand basin, South Africa
. Journal of African Earth Sciences, 178,104190.
https://doi.org/10.1016/j.jafrearsci.2021.104190
[13] Prasad, K.N.D., L.T. Pham, A.P. and Singh. (2022). A novel filter “ImpTAHG” for edge detection and a case study from Cambay Rift Basin, India. Pure and Applied Geophysics, 179(6–7),2351–2364.
https://doi.org/10.1007/s00024-022-03059-z
[14] Ibraheem, I.M., B. Tezkan, H. Ghazala, and A.A. Othman. (2023). A new edge enhancement filter for the interpretation of magnetic field data. Pure and Applied Geophysics, 180,2223–2240.
https://doi.org/10.1007/s00024-023-03249-3
[15] Alvandi, A., and V.E. Ardestani. (2023). Edge detection of potential field anomalies using the Gompertz function as a high-resolution edge enhancement filter. Bulletin of Geophysics & Oceanography, 64(3),279–300.
https://doi.org/10.4430/bgo00420
[17] Nasuti, Y., and A. Nasuti. (2018). NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies. Geophysical Journal International, 214(1),36–45.
https://doi.org/10.1093/gji/ggy117
[18] Nasuti, Y., A. Nasuti, and D. Moghadas. (2019). STDR: A novel approach for enhancing and edge detection of potential field data. Pure and Applied Geophysics, 176(2),827–841.
https://doi.org/10.1007/s00024-018-2016-5
[19] Pham, L.T., E. Oksum, and T.D. Do. (2019). Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica et Geophysica, 54(1),143–155.
https://doi.org/10.1007/s40328-019-00248-6
[22] Prasad, K.N.D., L.T. Pham, A.P. Singh, A.M. Eldosouky, K. Abdelrahman, M.S. Fnais, and D. Gómez-Ortiz. (2022). A novel enhanced total gradient (ETG) for interpretation of magnetic data. Minerals, 12(11),1468.
https://doi.org/10.3390/min12111468
[23] Alvandi, A., K. Su, H. Ai, V.E. Ardestani, and C. Lyu. (2023). Enhancement of potential field source boundaries using the hyperbolic domain (Gudermannian function). Minerals, 13(10),1312.
https://doi.org/10.3390/min13101312
[24] Alvandi, A., V.E. Ardestani, and S.H. Motavalli-Anbaran. (2024). A novel method for interpreting potential field anomalies using the Rootsig function. International Journal of Mining and Geo-Engineering
. https://doi.org/10.22059/ijmge.2024.382962.595198
[25] Ai, H., H. Deniz Toktay, A. Alvandi, R. Pašteka, K. Su, and Q. Liu. (2024). Advancing potential field data analysis: the modified horizontal gradient amplitude method (MHGA). Contributions to Geophysics and Geodesy, 54(2),119–143.
https://doi.org/10.31577/congeo.2024.54.2.1
[26] Ai, H., Y.L. Ekinci, A. Alvandi, H. Deniz Tokta, C. Balkaya, and A. Roy. (2024). Detecting edges of geologic sources from gravity or magnetic anomalies through a novel algorithm based on hyperbolic tangent function. Turkish Journal of Earth Sciences, 33(6),684-701. https://doi.org/10.55730/1300-0985.1936
[27] Kafadar, Ö., and E. Oksum. (2024). Enhanced dip angle map using Kuwahara and Gaussian filters: An example from Burdur region. Turkish Journal of Earth Sciences, 33(4),395–406.
https://doi.org/10.55730/1300-0985.1919
[28] Pham, L.T., S.P. Oliveira, M. Le-Huy, D.V. Nguyen, T.Q. Nguyen-Dang, T.D. Do, K.V. Tran, T.N. Hong-Duyen, T.N. To-Nhu, and H.Q. Pham. (2024). Reliable Euler deconvolution solutions of gravity data throughout the β-VDR and THGED methods: Application to mineral exploration and geological structural mapping. Vietnam Journal of Earth Sciences, 46(3),432–448.
https://doi.org/10.15625/2615-9783/21009
[29] Tuyen, N.H., P.V. Phach, R.B. Shakirov, C.D. Trong, P.N. Hung, and L.D. Anh. (2018). Geoblocks recognition and delineation of the earthquake-prone areas in the Tuan Giao area (Northwest Vietnam). Geotectonics, 52,359–381.
https://doi.org/10.1134/S001685211803007X
[30] Koszowska, E., A. Wolska, W. Zuchiewicz, N.Q. Cuong, and Z. Pécskay. (2007). Crustal contamination of Late Neogene basalts in the Dien Bien Phu Basin, NW Vietnam: Some insights from petrological and geochronological studies. Journal of Asian Earth Sciences, 29(1),1–17.
https://doi.org/10.1016/j.jseaes.2005.12.003
[31] Rao, D.B., M.J. Prakash, N. Ramesh Babu. (1990). 3-D and 2 1/2-D modeling of gravity anomalies with variable density contrast. Geophysical Prospecting, 38,411–422. https://doi.org/
10.1111/j.1365-2478.1990.tb01854.x.
[32] Pham, L.T. (2023). A novel approach for enhancing potential fields: application to aeromagnetic data of the Tuangiao, Vietnam. The European Physical Journal Plus, 138, 1134. https://doi.org/10.1140/epjp/s13360-023-04760-1
[33] Pham, L.T., S.P. Oliveira, C.V.S. Le, N.T. Bui, A.H. Vu, and D.A. Nguyen. (2023). Gravity data enhancement using the exponential transform of the tilt angle of the horizontal gradient. Minerals, 13(12),1539.
https://doi.org/10.3390/min13121539
[34] Pham, L.T. (2020). A comparative study on different methods for calculating gravity effect of an uneven layer: Application to computation of Bouguer gravity anomaly in the East Vietnam Sea and adjacent areas. VNU Journal of Science: Mathematics - Physics, 36(3),106–114.
https://doi.org/10.25073/2588-1124/vnumap.4515