[4] Chen, Y. N., & Yang, Z. X. (2017). A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays.
Computers and Geotechnics, 90, 133-143. Doi:
https://doi.org/10.1016/j.compgeo.2017.06.007
[6] Naylor, D. J. (1985). A continuous plasticity version of the critical state model.
International Journal for Numerical Methods in Engineering, 21(7), 1187-1204. Doi:
https://doi.org/10.1002/nme.1620210703
[7] Paston, M., Zienkiewicz, O. C., & Leung, K. H. (1985). Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands.
International Journal for Numerical and Analytical Methods in Geomechanics, 9(5). Doi:
https://doi.org/10.1002/nag.1610090506
[9] Nova, R., & Wood, D. M. (1979). A constitutive model for sand in triaxial compression.
International Journal for Numerical and Analytical Methods in Geomechanics, 3(3), 255-278. Doi:
https://doi.org/10.1002/nag.1610030305
[12] Jocković, S., & Vukićević, M. (2017). Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule.
Computers and Geotechnics, 83, 16-29. Doi:
https://doi.org/10.1016/j.compgeo.2016.10.013
[13] Jian, L. I., Chen, S., & Jiang, L. (2016). On implicit integration of the bounding surface model based on swell–shrink rules.
Applied Mathematical Modelling, 40(19-20), 8671-8684. Doi:
https://doi.org/10.1016/j.apm.2016.05.014
[14] Khalili, N., Habte, M. A., & Valliappan, S. (2005). A bounding surface plasticity model for cyclic loading of granular soils.
International Journal for Numerical Methods in Engineering, 63(14), 1939-1960. Doi:
https://doi.org/10.1002/nme.1351
[17] da Fonseca, A. V., Molina-Gómez, F., Ferreira, C., & Quintero, J. (2023). Modelling the critical state behaviour of granular soils: Application of NorSand constitutive law to TP-Lisbon sand.
Geomechanics and Engineering, 34(3), 317-328. Doi:
https://doi.org/10.12989/gae.2023.34.3.317
[19] Yu, H. S., & Khong, C. D. (2003). Bounding surface formulation of a unified critical state model for clay and sand. In
Deformation Characteristics of Geomaterials, IS Lyon 2003 (pp. 1111-1118). Doi:
https://doi.org/10.1016/j.mechrescom.2006.06.010
[21] Hu, C., & Liu, H. (2014). Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay.
Computers and Geotechnics, 55, 27-41. Doi:
https://doi.org/10.1016/j.compgeo.2013.07.012
[22] Rouainia, M., & Muir Wood, D. (2001). Implicit numerical integration for a kinematic hardening soil plasticity model.
International Journal for Numerical and Analytical Methods in Geomechanics, 25(13), 1305-1325. Doi:
https://doi.org/10.1002/nag.179
[24] Moghadam, S. I., Taheri, E., Ahmadi, M., & Ghoreishian Amiri, S. A. (2022). Unified bounding surface model for monotonic and cyclic behaviour of clay and sand.
Acta Geotechnica, 17(10), 4359-4375. Doi:
https://doi.org/10.1007/s11440-022-01521-9
[28] Bishop, A. W., Webb, D. L., & Lewin, P. I. (1965). Undisturbed samples of London Clay from the Ashford Common shaft: strength–effective stress relationships.
Geotechnique, 15(1), 1-31. Doi:
https://doi.org/10.1680/geot.1965.15.1.1
[30] Jeong, S., Ko, J., Song, S., & Kim, J. (2024). The behaviors of a Korean weathered soil under monotonic loadings.
Geomechanics and Engineering, 38(2), 157-164. Doi: .
https://doi.org/10.12989/gae.2024.38.2.157
[31] Bella, G., & Musso, G. (2024). Liquefaction susceptibility of silty tailings under monotonic triaxial tests in nearly saturated conditions.
Geomechanics and Engineering: An International Journal, 36(3), 247-258. Doi:
https://doi.org/10.12989/gae.2024.36.3.247
[36] Dafalias, Y. F., & Popov, E. P. (1975). A model of nonlinearly hardening materials for complex loading.
Acta Mechanica, 21(3), 173-192. Doi:
https://doi.org/10.1007/BF01181053
[39] Dafalias, Y. F. (1981). The concept and application of the bounding surface in plasticity theory. In
Physical Non-Linearities in Structural Analysis: Symposium Senlis, France May 27–30, 1980 (pp. 56-63). Berlin, Heidelberg: Springer Berlin Heidelberg. Doi:
https://doi.org/10.1007/978-3-642-81582-9_9
[40] Hu, C., & Liu, H. (2015). A new bounding-surface plasticity model for cyclic behaviors of saturated clay.
Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 101-119. Doi:
https://doi.org/10.1016/j.cnsns.2014.10.023
[42] Lu, Y., Zhu, W. X., Ye, G. L., & Zhang, F. (2021). A unified constitutive model for cemented/non-cemented soils under monotonic and cyclic loading. Acta Geotechnica, 16(1), 1-19. Doi: https://doi.org/10.1007/s11440-021-01348-w
[43] Wang, R., Cao, W., Xue, L., & Zhang, J. M. (2021). An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotechnica, 16(1), 43–65. Doi: https://doi.org/10.1007/s11440-020-00984-y
[45] Rezania, M., Dejaloud, H. (2022). A bounding surface constitutive model with a moving projection centre for highly overconsolidated clays.
[47] Verbrugge, J. C., & Schroeder, C. (2018). Geotechnical Correlations for Soils and Rocks. John Wiley & Sons. Doi:10.1002/9781119482819
[48] Schuller, H., & Schweiger, H. F. (2002). Application of a multilaminate model to simulation of shear band formation in NATM-tunnelling.
Computers and Geotechnics, 29(7), 501-524. Doi:
https://doi.org/10.1016/S0266-352X(02)00013-7
[49] Dashti, H., Sadrnejad, S. A., & Ganjian, N. (2017). Modification of a constitutive model in the framework of a multilaminate method for post-liquefaction sand.
Latin American Journal of Solids and Structures, 14, 1569-1593. Doi:
https://doi.org/10.1590/1679-78253841
[50] Dashti, H., Sadrnejad, S. A., & Ganjian, N. (2019). A novel semi-micro multilaminate elasto-plastic model for the liquefaction of sand.
Soil Dynamics and Earthquake Engineering, 124, 121-135. Doi:
https://doi.org/10.1016/j.soildyn.2019.05.031
[51] Sadrnejad, S. A., & Hoseinzadeh, M. R. (2019). Multi-laminate rate-dependent modelling of static and dynamic concrete behaviors through damage formulation.
Scientia Iranica, 26(3), 1194-1205. Doi:
20.1001.1.10263098.2019.26.3.9.2
[52] Peyman, F., & Sadrnejad, S. A. (2019). Numerical Analysis of Sand Behavior based on Modified Multi-laminate Model. International Journal of New Technology and Research, 2(8), 263445.
[54] Ghoreishian Amiri, S. A. (2014). Application of the multi-laminate sub-loading surface model in the simulation of a pipe-jacking operation.
Numerical Methods in Civil Engineering, 1(2), 41-47. Doi:
https://doi.org/10.29252/NMCE.1.2.41