[1] Xuan, F., Xia, X., & Wang, J. (2009). The application of a small strain model in excavations. Journal of Shanghai Jiaotong University (Science), 14, 418–422.
[2] Lim, A., Ou, C.-Y., & Hsieh, P.-G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, 5(1), 9–20.
[3] Wei-dong, W. (2010). Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties. Rock and Soil Mechanics.
[4] Farzi, M., Pakbaz, M. S., & Aminpour, H. A. (2018). Selection of support system for urban deep excavations: A case study in Ahvaz geology. Case Studies in Construction Materials, 8, 131-138. https://doi.org/10.1016/j.cscm.2018.01.004
[5] Hassan, A. M. (2019). Studying the behaviour of deep excavation adjacent to old buildings using Plaxis 3D. Journal of the Egyptian Society of Engineers, 58(1), 15–20.
[6] Nematollahi, M., & Dias, D. (2022). Twin earth pressure balance tunnelling – monitoring and numerical study of an urban case. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 1-13. https://doi.org/10.1680/jgeen.21.00165
[7] Reiffsteck, P. (2002). Nouvelles technologies d’essai en mecanique des sols-Etat de l’art. In PARAM 2002-SYMPOSIUM INTERNATIONAL IDENTIFICATION ET DETERMINATION DES PARAMETRES DES SOLS ET DES ROCHES POUR LES CALCULS GEOTECHNIQUES, PARIS, 2-3 SEPTEMBRE 2002.
[8] Chang, G. M. (2008). Optimization design of composite soil-nailing in loess excavation. In Geotechnical Aspects of Underground Construction in Soft Ground. CRC Press, pp. 149–156.
[9] Lazarte, C. A., et al. (2003). Geotechnical engineering circular No. 7 soil nail walls US Department of Transportation Publication No. FHWA0-IF-03-017 Federal Highway Administration, FHWA. Washington, DC, USA.