[1] C. Du, D. Li, F. Yi, L. Wang, B. Niu, Analysis of interface mechanical properties between geotextiles and tailings during pull-out tests, PLOS ONE 17 (2022) e0276543. https://doi.org/10.1371/journal.pone.0276543.
[2] M. Maleki, H. Sereshteh, M. Mousivand, M. Bayat, An equivalent beam model for the analysis of tunnel-building interaction, Tunnelling and Underground Space Technology 26 (2011) 524–533. https://doi.org/10.1016/j.tust.2011.02.006.
[3] J. Ruiz-García, Mainshock-Aftershock Ground Motion Features and Their Influence in Building’s Seismic Response, Journal of Earthquake Engineering 16 (2012) 719–737. https://doi.org/10.1080/13632469.2012.663154.
[4] A. Motallebiyan, M. Bayat, Bَ. Nadi, Analyzing the Effects of Soil-Structure Interactions on the Static Response of Onshore Wind Turbine Foundations Using Finite Element Method, Civ. Eng. Infrastruct. J. 53 (2020). https://doi.org/10.22059/ceij.2020.281914.1586.
[5] Q. Zhang, C. Zhang, Nonlinear shear characteristics of frozen loess-concrete interface, PLOS ONE 18 (2023) e0290025. https://doi.org/10.1371/journal.pone.0290025.
[6] Influence mechanism of structure on shear mechanical deformation characteristics of loess-steel interface | PLOS ONE, (n.d.). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263676 (accessed November 14, 2023).
[7] R.K. Rowe, S.K. Ho, Continuous Panel Reinforced Soil Walls on Rigid Foundations, Journal of Geotechnical and Geoenvironmental Engineering 123 (1997) 912–920. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:10(912).
[8] Numerical Modeling of Seismic Response of Rigid Foundation on Soft Soil | International Journal of Geomechanics | Vol 8, No 6, (n.d.). https://ascelibrary.org/doi/10.1061/%28ASCE%291532-3641%282008%298%3A6%28336%29 (accessed November 14, 2023).
[9] B.M. Das, Introduction to soil mechanics, Ames : Iowa State University Press, 1979. http://archive.org/details/introductiontoso0000dasb (accessed November 14, 2023).
[10] F. Tatsuoka, On the Angle of Interface Friction For Cohesionless Soils, Soils and Foundations 25 (1985) 135–141. https://doi.org/10.3208/sandf1972.25.4_135.
[11] Z. Wang, W. Richwien, A Study of Soil-Reinforcement Interface Friction, Journal of Geotechnical and Geoenvironmental Engineering 128 (2002) 92–94. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(92).
[12] F. Han, E. Ganju, R. Salgado, M. Prezzi, Effects of Interface Roughness, Particle Geometry, and Gradation on the Sand–Steel Interface Friction Angle, J. Geotech. Geoenviron. Eng. 144 (2018) 04018096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001990.
[13] A.K. Janipour, M. Mousivand, M. Bayat, Study of interface shear strength between sand and concrete, Arab J Geosci 15 (2022) 172. https://doi.org/10.1007/s12517-021-09394-0.
[14] L. Hu, J. Pu, Testing and Modeling of Soil-Structure Interface, J. Geotech. Geoenviron. Eng. 130 (2004) 851–860. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851).
[15] T.B. Hamid, G.A. Miller, Shear strength of unsaturated soil interfaces, Can. Geotech. J. 46 (2009) 595–606. https://doi.org/10.1139/T09-002.
[16] X. Chen, J. Zhang, Y. Xiao, J. Li, Effect of roughness on shear behavior of red clay – concrete interface in large-scale direct shear tests, Can. Geotech. J. 52 (2015) 1122–1135. https://doi.org/10.1139/cgj-2014-0399.
[17] A.G. Noroozi, R. Ajalloeian, M. Bayat, Effect of FTC on the interface between soil materials and asphalt concrete using a direct shear test, Case Studies in Construction Materials 17 (2022) e01632. https://doi.org/10.1016/j.cscm.2022.e01632.
[18] A.G. Noroozi, R. Ajalloeian, M. Bayat, Experimental study of the role of interface element in earth dams with asphalt concrete core - Case study: Mijran dam, Case Studies in Construction Materials 16 (2022) e01004. https://doi.org/10.1016/j.cscm.2022.e01004.
[19] W.-Q. Feng, M. Bayat, Z. Mousavi, A.-G. Li, J.-F. Lin, Shear strength enhancement at the sand-steel interface: A pioneering approach with Polyurethane Foam Adhesive (PFA), Construction and Building Materials 429 (2024) 136297.
[20] W.-Q. Feng, Z. Mousavi, M. Farhadi, M. Bayat, M.M. Ettefagh, S. Varahram, M.H. Sadeghi, A hybrid wavelet-deep learning approach for vibration-based damage detection in monopile offshore structures considering soil interaction, J Civil Struct Health Monit (2024). https://doi.org/10.1007/s13349-024-00876-9.
[21] H. Kishida, M. Uesugi, Tests of the interface between sand and steel in the simple shear apparatus, Géotechnique 37 (1987) 45–52. https://doi.org/10.1680/geot.1987.37.1.45.
[22] A.M. Gokhale, E.E. Underwood, A general method for estimation of fracture surface roughness: Part I. Theoretical aspects, Metall Trans A 21 (1990) 1193–1199. https://doi.org/10.1007/BF02698249.
[23] A. Ahmadi, M.A. Nozari, M. Bayat, E. Delavari, Investigating Calcareous and Silica Sand Behavior at Material Interfaces: A Comprehensive Study, Studia Geotechnica et Mechanica 0 (2024). https://doi.org/10.2478/sgem-2024-0023.
[24] L.-J. Su, W.-H. Zhou, W.-B. Chen, X. Jie, Effects of relative roughness and mean particle size on the shear strength of sand-steel interface, Measurement 122 (2018) 339–346. https://doi.org/10.1016/j.measurement.2018.03.003.
[25] H. Haeri, V. Sarfarazi, Z. Zhu, M.F. Marji, A. Masoumi, Investigation of shear behavior of soil-concrete interface, Smart Structures and Systems 23 (2019) 81–90.
[26] Y.-B. Wang, C. Zhao, Y. Wu, Study on the effects of grouting and roughness on the shear behavior of cohesive soil–concrete interfaces, Materials 13 (2020) 3043.
[27] C. Kim, L. Chen, H. Wang, H. Castaneda, Global and local parameters for characterizing and modeling external corrosion in underground coated steel pipelines: A review of critical factors, Journal of Pipeline Science and Engineering 1 (2021) 17–35.
[28] M. Yang, S. Kainuma, Investigation of steel corrosion near the air–liquid interface in NaCl solution and soil environment, Corrosion Engineering, Science and Technology 56 (2021) 690–702. https://doi.org/10.1080/1478422X.2021.1943818.
[29] Y. Wang, W. Wang, J. Huang, L. Luo, Effect of corrosion on soil-structure interfacial shearing property and bearing capacity of steel foundation in submarine soil environment, Computers and Geotechnics 156 (2023) 105269.
[30] E. Ravera, M. Sutman, L. Laloui, Cyclic thermomechanical response of fine-grained soil−concrete interface for energy piles applications, Can. Geotech. J. 58 (2021) 1216–1230. https://doi.org/10.1139/cgj-2020-0437.
[31] M. Uesugi, H. Kishida, Frictional Resistance at Yield between Dry Sand and Mild Steel, Soils and Foundations 26 (1986) 139–149. https://doi.org/10.3208/sandf1972.26.4_139.
[32] G.A. Athanasopoulos, Effect of particle size on the mechanical behaviour of sand-geotextile composites, Geotextiles and Geomembranes 12 (1993) 255–273.
[33] H. Peng-Fei, M. Yan-Hu, M. Wei, Y.-T. Huang, D. Jian-Hua, Testing and modeling of frozen clay–concrete interface behavior based on large-scale shear tests, Advances in Climate Change Research 12 (2021) 83–94.
[34] L. Chen, J. He, B. Yao, C. Lei, Z. Zhang, Influence of the Initial Relative Density on the Drained Strength Properties of Soils Subjected to Internal Erosion, Soil Mech Found Eng 56 (2019) 273–279. https://doi.org/10.1007/s11204-019-09602-w.
[35] S.V. Maghvan, R. Imam, J.S. McCartney, Relative density effects on the bearing capacity of unsaturated sand, Soils and Foundations 59 (2019) 1280–1291.