[1] Sims, R.E., 2004. Renewable energy: a response to climate change. Solar energy, 76(1-3), pp.9-17.
[2] Panwar, N.L., Kaushik, S.C. and Kothari, S., 2011. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews, 15(3), pp.1513-1524.
[3] Scrosati, B. and Garche, J., 2010. Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), pp.2419-2430.
[4] Gaines, L., Nelson P. (2009) Lithium ion batteries: possible materials issues in U.S. Department of Energy. Agonnee National Laboratory Publication, Washington, D.C.
[5] Wanger, T.C., 2011. The Lithium future—resources, recycling, and the environment. Conservation Letters, 4(3), pp.202-206.
[6] Vikström, H., Davidsson, S. and Höök, M., 2013. Lithium availability and future production outlooks. Applied Energy, 110, pp.252-266.
[7] Nygren, E., Aleklett, K. and Höök, M., 2009. Aviation fuel and future oil production scenarios. Energy Policy, 37(10), pp.4003-4010.
[8] IEA. World Energy Outlook 2008. <http://www.iea.org>.
[9] Hoegh-Guldberg, O. and Bruno, J.F., 2010. The impact of climate change on the world’s marine ecosystems. Science, 328(5985), pp.1523-1528.
[10] Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, J.M., Hoegh-Guldberg, O. and Bairlein, F., 2002. Ecological responses to recent climate change. Nature, 416(6879), p.389.
[11] Munk, L.A., Hynek, S.A., Bradley, D., Boutt, D., Labay, K. and Jochens, H., 2016. Lithium brines: A global perspective. Reviews in Economic Geology, 18, pp.339-365.
[12] Schulz, K.J., DeYoung, J.H., Seal, R.R. and Bradley, D.C. eds., 2018. Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply. Geological Survey.
[13] Garrett, D. 2004. Handbook of lithium and natural calcium chloride: Their deposits, processing, uses and properties. Amsterdam: Elsevier Academic Press.
[14] Gruber, P.W., Medina, P.A., Keoleian, G.A., Kesler, S.E., Everson, M.P. and Wallington, T.J., 2011. Global lithium availability: A constraint for electric vehicles?. Journal of Industrial Ecology, 15(5), pp.760-775.
[15] Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. international Journal of Remote sensing, 21(5), pp.847-859.
[16] Jensen, J.R., 2015. Introductory Digital Image Processing: A Remote Sensing Perspective.
[17] Rajesh, H.M., 2004. Application of remote sensing and GIS in mineral resource mapping-An overview. Journal of Mineralogical and Petrological Sciences, 99(3), pp.83-103.
[18] Speirs, J., Contestabile, M., Houari, Y. and Gross, R., 2014. The future of lithium availability for electric vehicle batteries. Renewable and Sustainable Energy Reviews, 35, pp.183-193.
[19] Blomgren, G.E., 2017. The development and future of lithium ion batteries. Journal of The Electrochemical Society, 164(1), pp.A5019-A5025.
[20] Curry, C., 2017. Lithium-ion battery costs and market. Bloomberg New Energy Finance, June.
[21] USGS. Lithium – mineral commodity summary 2019; 2019 <http:// minerals.usgs.gov/minerals/pubs/commodity/lithium/>.
[22] Brown, T.J., Idoine, N.E., Raycraft, E.R., Shaw, R.A., Hobbs, S.F., Everett, P., Deady, E.A. and Bide, T., 2018. World Mineral Production 2012-16. British Geological Survey.
[23] Bradley, D., Stillings, L., Jaskula, B., Munk, L., & McCauley, A. (2017). Lithium. Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply.
https://doi.org/10.3133/pp1802K.
[24] Ettehadi, A., Chuprin, M., Mokhtari, M., Gang, D., Wortman, P., & Heydari, E. (2024). Geological insights into exploration and extraction of lithium from oilfield produced-water in the USA: A review. Energy & Fuels, 38(12), 10517–10541. https://doi.org/10.1021/acs.energyfuels.4c00732
[25] Mousavinezhad, S., Nili, S., Fahimi, A., & Vahidi, E. (2024). Environmental impact assessment of direct lithium extraction from brine resources: Global warming potential, land use, water consumption, and charting sustainable scenarios. Resources, Conservation and Recycling, 205, 107583. https://doi.org/10.1016/j.resconrec.2024.107583
[26] Schenker, V., Bayer, P., Oberschelp, C., & Pfister, S. (2024). Is lithium from geothermal brines the sustainable solution for Li-ion batteries? Renewable and Sustainable Energy Reviews, 199, 114456. https://doi.org/10.1016/j.rser.2024.114456
[27] Tabelin, C. B., Dallas, J., Casanova, S., Pelech, T., Bournival, G., Saydam, S., & Canbulat, I. (2021). Towards a low-carbon society: A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives. Minerals Engineering, 163, 106743. https://doi.org/10.1016/j.mineng.2020.106743
[28] Fuentealba, D., Flores-Fernández, C., Troncoso, E., & Estay, H. (2023). Technological tendencies for lithium production from salt lake brines: Progress and research gaps to move towards more sustainable processes. Resources Policy, 83, 103572. https://doi.org/10.1016/j.resourpol.2023.103572
[29] Vera, M. L., Torres, W. R., Galli, C. I., Chagnes, A., & Flexer, V. (2023). Environmental impact of direct lithium extraction from brines. Nature Reviews Earth & Environment, 4(3), 149–165. https://doi.org/10.1038/s43017-022-00387-5
[30] Sutama, C., Ashat, A., & Alkano, D. (2023). Economic assessment of lithium extraction from geothermal brine: Comparative analysis worldwide and Indonesia's prospects.
[31] Krishnan, R., & Gopan, G. (2024). A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20, 100749. https://doi.org/10.1016/j.clet.2024.100749
[32] Nikkhah, H., Ipekçi, D., Xiang, W., Stoll, Z., Xu, P., Li, B., McCutcheon, J. R., & Beykal, B. (2024). Challenges and opportunities of recovering lithium from seawater, produced water, geothermal brines, and salt lakes using conventional and emerging technologies. Chemical Engineering Journal, 498, 155349. https://doi.org/10.1016/j.cej.2024.155349
[33] Rentier, E. S., Hoorn, C., & Seijmonsbergen, A. C. (2024). Lithium brine mining affects geodiversity and Sustainable Development Goals. Renewable and Sustainable Energy Reviews, 202, 114642. https://doi.org/10.1016/j.rser.2024.114642
[34] Yaksic, A. and Tilton, J.E., 2009. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resources Policy, 34(4), pp.185-194.
[35] Warren, J.K., 2006. Evaporites: sediments, resources and hydrocarbons. Springer Science & Business Media.
[36] Chagnes, A. and Swiatowska, J. eds., 2015. Lithium process chemistry: Resources, extraction, batteries, and recycling. Elsevier.
[37] Xiao, G., Tong, K., Zhou, L., Xiao, J., Sun, S., Li, P., & Yu, J. (2012). Adsorption and desorption behavior of lithium ion in spherical PVC–MnO₂ ion sieve.
Industrial & Engineering Chemistry Research, 51(33), 10921–10929.
https://doi.org/10.1021/ie300087s
[38] Mozani Afarani, M. (2013). Lithium presence in brines and its extraction process (Master's thesis, Department of Materials Science and Engineering, Sharif University of Technology).
[39] Bradley, D., Munk, L., Jochens, H., Hynek, S. and Labay, K., 2013. A preliminary deposit model for lithium brines. US Department of the Interior, US Geological Survey
[40] Kesler, S.E., Gruber, P.W., Medina, P.A., Keoleian, G.A., Everson, M.P. and Wallington, T.J., 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, pp.55-69.
[41] Davari, N., Lak, R., & Rozeh Kar, S. (2017). Monitoring the trend of changes in the percentage of major elements in the Urmia Lake brine over a three-month period. In Proceedings of the International Congress on Sciences and Engineering (pp. 45-50). Hamburg, Germany: Permanent Secretariat of the Congress.
[42] Soleimani Khalaji, M. (2016). Lithium extraction from Urmia Lake brine (Master's thesis, Department of Materials Science and Engineering, Sharif University of Technology).
[43] Moazeni, M., Hajipour, H., Askari, M. and Nusheh, M., 2015. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Materials Research Bulletin, 61, pp.70-75.
[44] Chitrakar, R., Kanoh, H., Miyai, Y. and Ooi, K., 2001. Recovery of lithium from seawater using manganese oxide adsorbent (H1. 6Mn1. 6O4) derived from Li1. 6Mn1. 6O4. Industrial & engineering chemistry research, 40(9), pp.2054-2058.
[45] Nishihama, S., Onishi, K. and Yoshizuka, K., 2011. Selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extraction and Ion Exchange, 29(3), pp.421-431.
[46] Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K. and Ooi, K., 2002. Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater. Industrial & engineering chemistry research, 41(17), pp.4281-4287.
[47] Fasel, D. and Tran, M.Q., 2005. Availability of lithium in the context of future D–T fusion reactors. Fusion engineering and design, 75, pp.1163-1168.
[48] Zheng, M. and Liu, X., 2009. Hydrochemistry of salt lakes of the Qinghai-Tibet Plateau, China. Aquatic Geochemistry, 15(1-2), pp.293-320.
[49] British Geological Survey. (BGS), Minerals UK, Lithium Profile. 2016. Available online:
[50] Meshram, P., Pandey, B.D. and Mankhand, T.R., 2014. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, pp.192-208.
[51] Hasani Pak, A. A. (2012). Mineral sampling (Exploration, extraction, and processing). Tehran University Press.
[52] Geochemical exploration guidelines for large-scale stream sediments (1:25000). (2011). Publication No. 540.
[53] Rayegani, B., Barati S., Goshtasb H., Gachpaz S., Ramezani J., and Sarkheil H.. (2020). “Sand and Dust Storm Sources Identification: A Remote Sensing Approach.” Ecological Indicators 112: 106099. doi: 10.1016/j.ecolind.2020.106099.
[54] Rayegani, B. Barati, S. Goshtasb, H. Sarkheil H., Ramezani J. (2019). An effective approach to selecting the appropriate pan-sharpening method in digital change detection of natural ecosystems, Ecol. Inform., 53, p. 100984.
https://doi.org/10.1016/j.ecoinf.2019.100984
[55] Kheirandish, Z., Raygani, B., & Badaq Jamali, J. (2015). Dust phenomenon detection in southwestern Iran using MODIS data. In Proceedings of the 1st International Conference on Dust Storms (pp. 15-20). Ahvaz, Iran: Shahid Chamran University of Ahvaz.
[56] De Carvalho, O.A. and Meneses, P.R., 2000, February. Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM). In Summaries of the 9th JPL Airborne Earth Science Workshop, JPL Publication 00-18 (Vol. 9). JPL Publication Pasadena, CA.
[57] Girouard, G., Bannari, A., El Harti, A. and Desrochers, A., 2004, July. Validated spectral angle mapper algorithm for geological mapping: comparative study between QuickBird and Landsat-TM. In XXth ISPRS congress, geo-imagery bridging continents, Istanbul, Turkey (pp. 12-23).
[58] Kuching, S., 2007. The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis. Journal of Computer Science, 3(6), pp.419-423.
[59] Pournamdari, M., Hashim, M. and Pour, A.B., 2014. Application of ASTER and Landsat TM Data for Geological Mapping of Esfandagheh Ophiolite Complex, Southern I ran. Resource Geology, 64(3), pp.233-246.
[60] Rashmi, S., Addamani, S., Ravikiran, A., 2014. Spectral Angle Mapper Algorithm for Remote Sensing Image Classification. International Journal of Innovative Science, Engineering & Technology. Available online: http://ijiset.com/v1s4/IJISET_V1_I4_27.pdf