Enhanced wastewater treatment using metal-based nanoparticles: a comprehensive study

Document Type : Review Paper

Authors

1 Department of Mining Engineering, Sahand University of Technology, Tabriz, Iran.

2 Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.

10.22059/ijmge.2025.386830.595211

Abstract

The escalating contamination of global water resources from industrial, agricultural, and domestic effluents underscores the urgent need for innovative wastewater treatment strategies. Metal-based nanoparticles (NPs) have revolutionized water purification because of their large surface area, strong reactivity, and adjustable physicochemical properties. This review explores the applications of NPs, such as zinc, iron, silver, titanium dioxide, cerium oxide, manganese oxide, and magnesium oxide in removing heavy metals, dyes, organic pollutants, and microbial pathogens from wastewater. The key mechanisms, including adsorption, filtration, photocatalysis, and redox reactions were critically analyzed, highlighting their superior efficiency in pollutant removal and water purification. The review also emphasized recent advancements in hybrid nanocomposites and functionalized NPs, which enhance selectivity and removal performance. Factors, such as nanoparticle size, surface charge, pH, and contact time influencing pollutant removal efficiency. Photocatalysis and redox mechanisms stand out for their eliminating complex pollutants into non-toxic byproducts, making them invaluable in addressing bioaccumulation and environmental risks. Despite these promising advancements, challenges persist, including potential nanoparticle toxicity, environmental persistence, and the scalability of these technologies. Future research should prioritize green synthesis methods, cost-effective production, and long-term environmental impact assessments. Integrating NPs with advanced treatment technologies, such as membrane filtration and oxidation processes, could offer a sustainable and scalable solution to global water scarcity and pollution. This review underscores the critical role of nanotechnology in developing efficient, eco-friendly wastewater treatment systems to ensure water security and environmental sustainability.

Keywords

Main Subjects


[1]      D. Harris, M., Scott, J., Hope, V., Wright, T., McGowan, C., & Ciccarone, Navigating environmental constraints to injection preparation: the use of saliva and other alternatives to sterile water among unstably housed PWID in London, Harm Reduction Journal. 17 (2020) 1–11. https://doi.org/10.1186/s12954-020-00369-0
[2]      A. Saberi, S., Zhiani, R., Mehrzad, J., & Motavalizadehkakhky, Synthesis and characterization of a novel TEMPO@ FeNi 3/DFNS–laccase magnetic nanocomposite for the reduction of nitro compounds, RSC Advances. 10 (2020) RSC advances. DOI: 10.1039/D0RA03989F
[3]      J. Zhang, L., Wang, H., Zhang, Q., Wang, W., Yang, C., Du, T., ... & Wang, Demand-oriented construction of Mo3S13-LDH: A versatile scavenger for highly selective and efficient removal of toxic Ag (I), Hg (II), As (III), and Cr (VI) from water, Science of the Total Environment. 820 (2022) 153334. https://doi.org/10.1016/j.scitotenv.2022.153334
[4]      N.J. Ashbolt, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology. 198 (2004) 229–238. https://doi.org/10.1016/j.tox.2004.01.030
[5]      A.M. Ward, J. S., Lapworth, D. J., Read, D. S., Pedley, S., Banda, S. T., Monjerezi, M., ... & MacDonald, Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water, Science of the Total Environment. 750 (2021) 141284. https://doi.org/10.1016/j.scitotenv.2020.141284
[6]      P. Rompre, A., Servais, P., Baudart, J., De-Roubin, M. R., & Laurent, Detection and enumeration of coliforms in drinking water: current methods and emerging approaches, Journal of Microbiological Methods. 49 (2002) 31–54. https://doi.org/10.1016/S0167-7012(01)00351-7
[7]      A.J. Bai, V. R., Kit, A. C., Kangadharan, G., Gopinath, R., Varadarajan, P., & Hao, Experimental study on total coliform violations in the complied NH2CL, O3, and UV treated municipal water supply system, The European Physical Journal Plus. 137 (2022) 689. https://doi.org/10.1140/epjp/s13360-022-02891-5
[8]      H.Y. Cao, K. F., Chen, Z., Wu, Y. H., Mao, Y., Shi, Q., Chen, X. W., ... & Hu, The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies, Water Research. 215 (2022) 118271. https://doi.org/10.1016/j.watres.2022.118271
[9]      S.M. Ali, O. I., Zaki, E. R., Abdalla, M. S., & Ahmed, Mesoporous Ag-functionalized magnetic activated carbon-based agro-waste for efficient removal of Pb (II), Cd (II), and microorganisms from wastewater, Environmental Science and Pollution Research. 30 (2023) 53548–53565. https://doi.org/10.1007/s11356-023-26000-w
[10]    M. Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method, Environmental Science and Pollution Research. 28 (2021) 9050–9066. https://doi.org/10.1007/s11356-021-12395-x
[11]    L. Li, J., Cao, Y., Ding, K., Ye, J., Li, F., Ma, C., ... & Shi, Research progress of industrial wastewater treatment technology based on solar interfacial adsorption coupled evaporation process, Science of the Total Environment. (2024) 172887. https://doi.org/10.1016/j.scitotenv.2024.172887
[12]    D.J. Mbamba, C. K., Tait, S., Flores-Alsina, X., & Batstone, A systematic study of multiple minerals precipitation modelling in wastewater treatment, Water Research. 85 (2015) 359–370. https://doi.org/10.1016/j.watres.2015.08.041
[13]    K. Kumar, M., Nandi, M., & Pakshirajan, Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation, Journal of Environmental Management. 278 (2021) 111555. https://doi.org/10.1016/j.jenvman.2020.111555
[14]    K. Swanckaert, B., Geltmeyer, J., Rabaey, K., De Buysser, K., Bonin, L., & De Clerck, A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste) water treatment, Separation and Purification Technology. 287 (2022). https://doi.org/10.1016/j.seppur.2022.120529
[15]    S.P. Fu, Z. J., Jiang, S. K., Chao, X. Y., Zhang, C. X., Shi, Q., Wang, Z. Y., ... & Sun, Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane, Water Research. 222 (2022) 118888. https://doi.org/10.1016/j.watres.2022.118888
[16]    I.M. Al-Obaidi, M., Kara-Zaitri, C., & Mujtaba, Wastewater treatment by reverse osmosis process, 2020. https://doi.org/10.1201/9781003019343
[17]    X. Qin, Y., Yuan, R., Wang, S., Zhang, X., Luo, S., & He, Catalytic Ozonation Treatment of Coal Chemical Reverse Osmosis Concentrate: Water Quality Analysis, Parameter Optimization, and Catalyst Deactivation Investigation, Toxics. 12 (2024) 681. https://doi.org/10.3390/toxics12090681
[18]    A.J.C.O.I.E. Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A review on industrial wastewater treatment via electrocoagulation processes., Current Opinion in Electrochemistry. 22 (2020) 154–169. https://doi.org/10.1016/j.coelec.2020.05.009
[19]    D. Zeng, W., Yao, B., Zhou, Y., Yang, J., & Zhi, Combination of electrochemical advanced oxidation and biotreatment for wastewater treatment and soil remediation, Journal of Environmental Sciences. (2024). https://doi.org/10.1016/j.jes.2024.02.036
[20]    B. Hube, S., Eskafi, M., Hrafnkelsdóttir, K. F., Bjarnadóttir, B., Bjarnadóttir, M. Á., Axelsdóttir, S., & Wu, Direct membrane filtration for wastewater treatment and resource recovery: A review, Science of the Total Environment. 710 (2020) 136375. https://doi.org/10.1016/j.scitotenv.2019.136375
[21]    Z. Liu, Y., Liu, H., & Shen, Nanocellulose based filtration membrane in industrial waste water treatment: A review., Materials. 14 (2021) 5398. https://doi.org/10.3390/ma14185398
[22]    N. Sharshir, S. W., Algazzar, A. M., Elmaadawy, K. A., Kandeal, A. W., Elkadeem, M. R., Arunkumar, T., ... & Yang, New hydrogel materials for improving solar water evaporation, desalination and wastewater treatment: a review, Desalination. 491 (2020) 114564. https://doi.org/10.1016/j.desal.2020.114564
[23]    J. Qu, M., Zhao, Y., Ge, J., Xue, Y., Mu, L., Liu, Q., ... & He, Multi-functional janus hollow solar evaporator based on copper foam for non-contact high-efficiency solar interfacial distillation, ACS Applied Materials & Interfaces. 15 (2023) 36999–37010. https://doi.org/10.1021/acsami.3c06049
 [24]   Y. Bürger, R., Diehl, S., Martí, M. C., & Vásquez, Simulation and control of dissolved air flotation and column froth flotation with simultaneous sedimentation, Water Science and Technology. 81 (2020) 1723–1732. https://doi.org/10.2166/wst.2020.258
[25]    and J.F.F.-M. Muñoz-Alegría, J.A., E. Muñoz-España, Dissolved air flotation: a review from the perspective of system parameters and uses in wastewater treatment, TecnoLógicas. 24 (2021) 281–303.
[26]    L. Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., ... & Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere. 275 (2021) 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
[27]    B. Benettayeb, A., Usman, M., Tinashe, C. C., Adam, T., & Haddou, A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment, Environmental Science and Pollution Research. 29 (2022) 48185–48209. https://doi.org/10.1007/s11356-022-19938-w
[28]    M. Pandová, I., Rimár, M., Panda, A., Valíček, J., Kušnerová, M., & Harničárová, A study of using natural sorbent to reduce iron cations from aqueous solutions, International Journal of Environmental Research and Public Health. 17 (2020) 3686. https://doi.org/10.3390/ijerph17103686
[29]    S.J. Saud, A., Gupta, S., Allal, A., Preud’Homme, H., Shomar, B., & Zaidi, Progress in the sustainable development of biobased (nano) materials for application in water treatment technologies, ACS Omega. 9 (2024) 29088–29113. https://doi.org/10.1021/acsomega.3c08883
[30]    W. Akhtar, M. S., Ali, S., & Zaman, Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications, Molecules. 29 (2024) 4317. doi: 10.3390/molecules29184317
[31]    P. Soni, S., Jha, A. B., Dubey, R. S., & Sharma, Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress, Science of the Total Environment. (2024) 171433. https://doi.org/10.1016/j.scitotenv.2024.171433
[32]    M.S. Chandra, D., Molla, M. T. H., Bashar, M. A., Islam, M. S., & Ahsan, Chitosan-based nano-sorbents: synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater, Scientific Reports. 13 (2023) 6050. https://doi.org/10.1038/s41598-023-32847-3
[33]    J.F. Hassanisaadi, M., Riseh, R. S., Rabiei, A., Varma, R. S., & Kennedy, Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants, International Journal of Biological Macromolecules. (2023) 125763. https://doi.org/10.1016/j.ijbiomac.2023.125763
[34]    M.K. Rafique, A., Akram, A., Iqbal, S., Abbas, S., Yousaf, S., Ullah, S., ... & Ullah, A Review on Nano Filtration System, International Journal of Environmental Chemistry. 10 (2024) 1–4. DOI (Journal): 10.37628/IJEC
[35]    C. Ma, W., Qi, H., Zhang, Y., Lin, M., Qiu, Y., & Zhang, Fabrication of Laminated Micro/Nano Filter and Its Application for Inhalable PM Removal, Polymers. 15 (2023) 1459. https://doi.org/10.3390/polym15061459
[36]      A.K. Yadav, S. K., Dutta, T. K., Chatterjee, A., Dutta, S., Mohammad, A., & Das, Environmental contamination of arsenic: pathway analysis through water-soil-feed-livestock in Nadia District (India) and potential human health risk, Environmental Science and Pollution Research. (2024) 1–24. https://doi.org/10.1007/s11356-024-34956-6
[37]    C. Zhang, C., Chen, H., Xue, G., Liu, Y., Chen, S., & Jia, A critical review of the aniline transformation fate in azo dye wastewater treatment, Journal of Cleaner Production. 321 (2021) 128971. https://doi.org/10.1016/j.jclepro.2021.128971
[38]    A. Zafar, S., Bukhari, D. A., & Rehman, Azo dyes degradation by microorganisms–An efficient and sustainable approach, Saudi Journal of Biological Sciences. 29 (2022) 103437. https://doi.org/10.1016/j.sjbs.2022.103437
[39]    W.F. Haidri, I., Shahid, M., Hussain, S., Shahzad, T., Mahmood, F., Hassan, M. U., ... & Shehata, Efficacy of biogenic zinc oxide nanoparticles in treating wastewater for sustainable wheat cultivation, Plants. 12 (2023) 3058. https://doi.org/10.3390/plants12173058
[40]    E. Montes-Hernandez, G., Di Girolamo, M., Sarret, G., Bureau, S., Fernandez-Martinez, A., Lelong, C., & Eymard Vernain, In situ formation of silver nanoparticles (Ag-NPs) onto textile fibers, ACS Omega. 6 (2021) 1316–1327. https://pubs.acs.org/doi/10.1021/acsomega.0c04814
[41]    A.. Halwani, Development of pharmaceutical nanomedicines: from the bench to the market, Pharmaceutics. 14 (2022) 106. https://doi.org/10.3390/pharmaceutics14010106
[42]    & S. Younas, Z., Mashwani, Z. U. R., Ahmad, I., Khan, M., Zaman, S., Sawati, L., Mechanistic approaches to the application of nano-zinc in the poultry and biomedical industries: A comprehensive review of future perspectives and challenges, Molecules. 28 (2023) 1064. https://doi.org/10.3390/molecules28031064
[43]    I. Siddique, K., Shahid, M., Shahzad, T., Mahmood, F., Nadeem, H., Saif ur Rehman, M., ... & Ahmad, Comparative efficacy of biogenic zinc oxide nanoparticles synthesized by Pseudochrobactrum sp. C5 and chemically synthesized zinc oxide nanoparticles for catalytic degradation of dyes and wastewater treatment, Environmental Science and Pollution Research. 28 (2021) 28307–28318. https://doi.org/10.1007/s11356-021-12575-9
[44]    J.H.P. El Messaoudi, N., Ciğeroğlu, Z., Şenol, Z. M., Bouich, A., Kazan-Kaya, E. S., Noureen, L., & Américo-Pinheiro, Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption, In Advances in Chemical Pollution, Environmental Management and Protection. 10 (2024) 305–345. https://doi.org/10.1016/bs.apmp.2023.06.016
[45]    D.S. Doğaroğlu, Z. G., Uysal, Y., Çaylalı, Z., & Karakulak, Green nanotechnology advances: green manufacturing of zinc nanoparticles, characterization, and foliar application on wheat and antibacterial characteristics using Mentha spicata (mint) and Ocimum basilicum (basil) leaf extracts, Environmental Science and Pollution Research. 30 (2023) 60820–60837. https://doi.org/10.1007/s11356-023-26827-3
[46]    Z. Yu, J., Wang, A. C., Zhang, M., & Lin, Water treatment via non-membrane inorganic nanoparticles/cellulose composites, Materials Today. 50 (2021) 329–357. https://doi.org/10.1016/j.mattod.2021.03.024
[47]    Z. Li, Z., Xie, W., Zhang, Z., Wei, S., Chen, J., & Li, Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water, International Journal of Biological Macromolecules. 245 (2023) 125524. https://doi.org/10.1016/j.ijbiomac.2023.125524
[48]    and L.M.P. Jawed, A., V. Saxena, Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review, Journal of Water Process Engineering. 33 (2020) 101009. https://doi.org/10.1016/j.jwpe.2019.101009
[49]    G.K. Ganie, Z. A., Khandelwal, N., Choudhary, A., & Darbha, Clean water production from plastic and heavy metal contaminated waters using redox-sensitive iron nanoparticle-loaded biochar, Environmental Research. (235AD) 116605. https://doi.org/10.1016/j.envres.2023.116605
[50]    D. Dutta, G., kumar Chinnaiyan, S., Sugumaran, A., & Narayanasamy, Sustainable bioactivity enhancement of ZnO–Ag nanoparticles in antimicrobial, antibiofilm, lung cancer, and photocatalytic applications, RSC Advances. 13 (2023) 26663–26682. DOI: 10.1039/D3RA03736C
[51]    H. Han, L., Zhan, W., Liang, X., Zhang, W., Huang, R., Chen, R., & Ni, In-situ generation Cu2O/CuO core-shell heterostructure based on copper oxide nanowires with enhanced visible-light photocatalytic antibacterial activity, Ceramics International. 48 (2022) 22018–22030. https://doi.org/10.1016/j.ceramint.2022.04.192
[52]    T. Shah, A. H., Wang, Y., Hussain, S., Akbar, M. B., Woldu, A. R., Zhang, X., & He, New aspects of C2 selectivity in electrochemical CO2 reduction over oxide-derived copper, Physical Chemistry Chemical Physics. 22 (2020) 2046–2053. DOI https://doi.org/10.1039/C9CP06009J
[53]    and S.S. Panda, A.P., U. Jha, Synthesis of nanostructured copper oxide loaded boehmite (CuO_Boehmite) for adsorptive removal of As (III/V) from aqueous solution, Journal of Water Process Engineering. 37 (2020) 101506. https://doi.org/10.1016/j.jwpe.2020.101506
[54]    U.O. and A.O.O. Aigbe, Green synthesis of metal oxide nanoparticles, and their various applications, Journal of Hazardous Materials Advances. (2024) 100401. https://doi.org/10.1016/j.hazadv.2024.100401
[55]    F. Abbas, S. Habib, D. Feng, Z. Yan, Optimizing generation capacities incorporating renewable energy with storage systems using genetic algorithms, Electronics. 7 (2018) 100. https://doi.org/10.3390/electronics7070100
[56]    Z. Yan, G., Jin, H., Yin, C., Hua, Y., Huang, Q., Zhou, G., ... & Zhu, Comparative effects of silicon and silicon nanoparticles on the antioxidant system and cadmium uptake in tomato under cadmium stress, Science of the Total Environment. 904 (2023) 166819. https://doi.org/10.1016/j.scitotenv.2023.166819
[57]    P. Aletayeb, P., Ghadam, P., & Mohammadi, Green synthesis of AgCl/Ag3 PO4 nanoparticle using cyanobacteria and assessment of its antibacterial, colorimetric detection of heavy metals and antioxidant properties., IET Nanobiotechnology,. 14 (2020) 707–713. https://doi.org/10.1049/iet-nbt.2020.0077
[58]    M. Asgari, S., Sun, L., Lin, J., Weng, Z., Wu, G., Zhang, Y., & Lin, Nanofibrillar cellulose/Au@ Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce, Microchimica Acta. 187 (2020) 1–11. https://doi.org/10.1007/s00604-020-04358-9
[59]    F. Suhalim, N. S., Kasim, N., Mahmoudi, E., Shamsudin, I. J., Jamari, N. L. A., & Mohamed Zuki, Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes, Membranes. 13 (2023) 602. https://doi.org/10.3390/membranes13060602
[60]    D. Mondal, P., Nandan, A., Ajithkumar, S., Siddiqui, N. A., Raja, S., Kola, A. K., & Balakrishnan, Sustainable application of nanoparticles in wastewater treatment: Fate, current trend & paradigm shift, Environmental Research. (2023) 116071. https://doi.org/10.1016/j.envres.2023.116071
[61]    and Y.-T.H. Rahman, R.O.A., A.M. El-Kamash, Applications of nano-zeolite in wastewater treatment: an overview, Water. 14 (2022) 137. https://doi.org/10.3390/w14020137
[62]    M.C. Kumari, S., Chowdhry, J., Kumar, M., & Garg, Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects, Environmental Research. (2024) 119782. https://doi.org/10.1016/j.envres.2024.119782
[63]    H. and H.E. Liang, Application of nanomaterials for demulsification of oily wastewater: A review study, Environmental Technology & Innovation. 22 (2021) 101498. https://doi.org/10.1016/j.eti.2021.101498
[64]    S.M. Yousefi, M., Narmani, A., & Jafari, Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals, Advances in Colloid and Interface Science. 278 (2020) 102125. https://doi.org/10.1016/j.cis.2020.102125
[65]    R. Sharma, H., Rana, N., Sarwan, J., Bose, J. C., Devi, M., & Chugh, Nano-material for waste water treatment, Materials Today: Proceedings. (2023). https://doi.org/10.1016/j.matpr.2023.02.258
[66]    S. Kozyatnyk, I., Yacout, D. M., Van Caneghem, J., & Jansson, Comparative environmental assessment of end-of-life carbonaceous water treatment adsorbents, Bioresource Technology. 302 (2020) 122866. https://doi.org/10.1016/j.biortech.2020.122866
[67]    M.P. Chaturvedi, V. K., Kushwaha, A., Maurya, S., Tabassum, N., Chaurasia, H., & Singh, Wastewater treatment through nanotechnology: role and prospects, Restoration of Wetland Ecosystem: A Trajectory towards a Sustainable Environment. (2020) 227–247. https://doi.org/10.1007/978-981-13-7665-8_14
[68]    G.M. Ahmed, S. F., Mofijur, M., Ahmed, B., Mehnaz, T., Mehejabin, F., Maliat, D., ... & Shafiullah, Nanomaterials as a sustainable choice for treating wastewater, Environmental Research. 214 (2022) 113807. https://doi.org/10.1016/j.envres.2022.113807
[69]    L. Plohl, O., Simonič, M., Kolar, K., Gyergyek, S., & Fras Zemljič, Magnetic nanostructures functionalized with a derived lysine coating applied to simultaneously remove heavy metal pollutants from environmental systems, Science and Technology of Advanced Materials. 22 (2021) 55–71. https://doi.org/10.1080/14686996.2020.1865114
[70]    M.A.T. Shaba, E. Y., Tijani, J. O., Jacob, J. O., & Suleiman, Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/Fe3O4 nanocomposite, Journal of Environmental Science and Health, Part A. 57 (2022) 1146–1167. https://doi.org/10.1080/10934529.2022.2162794
[71]    J.H.P. El Mouden, A., El Messaoudi, N., El Guerraf, A., Bouich, A., Mehmeti, V., Lacherai, A., ... & Américo-Pinheiro, Removal of cadmium and lead ions from aqueous solutions by novel dolomite-quartz@ Fe3O4 nanocomposite fabricated as nanoadsorbent, Environmental Research. 225 (2023) 115606. https://doi.org/10.1016/j.envres.2023.115606
[72]    S. Devatha, C. P., & Shivani, Novel application of maghemite nanoparticles coated bacteria for the removal of cadmium from aqueous solution, Journal of Environmental Management. 258 (2020) 110038. https://doi.org/10.1016/j.jenvman.2019.110038
[73]    M. Predoi, D., Iconaru, S. L., Predoi, M. V., & Motelica-Heino, Removal and oxidation of As (III) from water using iron oxide coated CTAB as adsorbent, Polymers. 12 (2020) 1687. https://doi.org/10.3390/polym12081687
[74]    A.J.S.R. Mustapha, S., Tijani, J. O., Ndamitso, M. M., Abdulkareem, S. A., Shuaib, D. T., Mohammed, A. K., & Sumaila, The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment, Scientific Reports. 10 (2020) 13068. https://doi.org/10.1038/s41598-020-69808-z
[75]    C. Leiva, E., Tapia, C., & Rodríguez, Highly efficient removal of Cu (II) ions from acidic aqueous solution using ZnO nanoparticles as nano-adsorbents, Water. 13 (2021) 2960. https://doi.org/10.3390/w13212960
[76]    B.L. Panneerselvam, A., Rajadurai, V., & Anguraj, Removal of nickel from aqueous solution using synthesized IL/ZnO NPs, Environmental Science and Pollution Research. 27 (2020) 29791–29803. https://doi.org/10.1007/s11356-019-07425-8
[77]    F. Cheraghi, R., Abrishamkar, M., Jahromi, H. J., & Hoseini, Synthesized Polyetheretherketone/Polyvinylalcohol Nanocomposite Modified with Zinc Oxide Nanoparticles: As an Effective Adsorbent for Removal of Arsenic (III) ion from Wastewater, Desalination and Water Treatment. (2024) 100008. https://doi.org/10.1016/j.dwt.2024.100008
[78]    K.M. Sahoo, D. P., Rath, D., Nanda, B., & Parida, Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production: a review, RSC Advances. 5 (2015) 83707–83724. https://doi.org/10.1039/C5RA14555D
[79]    T.B. Chandan, A. K., Mallika, G. N., & Narsaiah, A green approach to arsenic removal using ZnO nanoparticles synthesized from Acacia Catechu leaf extract, Materials Today: Proceedings. 72 (2023) 110–119. https://doi.org/10.1016/j.matpr.2022.06.199
[80]    J.G. Morales, H. M., Torreblanca, G., Mar, A., Alcoutlabi, M., Eubanks, T. M., Plata, E., & Parsons, Investigation of the Thermodynamics for the Removal of As (III) and As (V) from Water Using Synthesized ZnO Nanoparticles and the Effects of pH, Temperature, and Time, Applied Sciences. 13 (2023) 10525. https://doi.org/10.3390/app131810525
[81]    N.H. Gabar Gassim, F. A. Z., Makkaw, A. J., & Aysa, Removal of mercury (II) in aqueous solution by using ZnO and ZnO/CdS nanoparticles as photocatalysts, Iranian Journal of Catalysis. 11 (2021) 397–403. 10.57647/ijc-kpbz-vc35
[82]    F.J. Primo, J. D. O., Bittencourt, C., Acosta, S., Sierra-Castillo, A., Colomer, J. F., Jaerger, S., ... & Anaissi, Synthesis of zinc oxide nanoparticles by ecofriendly routes: adsorbent for copper removal from wastewater, Frontiers in Chemistry. 8 (2020) 571790. https://doi.org/10.3389/fchem.2020.571790
[83]    and N.H.A. Gassim, F.A.-Z.G., A.J. Makkaw, Removal of mercury (II) in aqueous solution by using ZnO and ZnO/CdS nanoparticles as photocatalysts, Iranian Journal of Catalysis. 11 (2021). https://doi.org/10.57647/ijc-kpbz-vc35
[84]    W. Govarthanan, M., Jeon, C. H., Jeon, Y. H., Kwon, J. H., Bae, H., & Kim, Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles, International Journal of Biological Macromolecules. 162 (2020) 1241–1249. https://doi.org/10.1016/j.ijbiomac.2020.06.227
[85]    A. Vicente-Martínez, Y., Caravaca, M., Soto-Meca, Total removal of Hg (II) from wastewater using magnetic nanoparticles coated with nanometric Ag and functionalized with sodium 2-mercaptoethane sulfonate, Environ. Chem. Lett. 18 (2020) 975–981. https://doi.org/10.1007/s10311-020-00987-x
[86]    G. Das, C., Sen, S., Singh, T., Ghosh, T., Paul, S. S., Kim, T. W., ... & Biswas, Green synthesis, characterization and application of natural product coated magnetite nanoparticles for wastewater treatment, Nanomaterials. 10 (2020) 1615. https://doi.org/10.3390/nano10081615
[87]    C.R. Soto Hidalgo, K. T., Ortiz-Quiles, E. O., Betancourt, L. E., Larios, E., José-Yacaman, M., & Cabrera, Photoelectrochemical solar cells prepared from nanoscale zerovalent iron used for aqueous Cd2+ removal, ACS Sustainable Chemistry & Engineering. 4 (2016) 738–745. https://doi.org/10.1021/acssuschemeng.5b00601
[88]    S. Masjedi, A., Askarizadeh, E., Baniyaghoob, Magnetic nanoparticles surface-modified with tridentate ligands for removal of heavy metal ions from water, Mater. Chem. Phys. 249 (2020) 122917. https://doi.org/10.1016/j.matchemphys.2020.122917
[89]    N. Mehrabi, N., Haq, U. F. A., Reza, M. T., & Aich, Application of deep eutectic solvent for conjugation of magnetic nanoparticles onto graphene oxide for lead (II) and methylene blue removal, Journal of Environmental Chemical Engineering. 8 (2020) 104222. https://doi.org/10.1016/j.jece.2020.104222
[90]    C. Chang, L., Pu, Y., Jing, P., Cui, Y., Zhang, G., Xu, S., ... & Qiao, Magnetic core-shell MnFe2O4@ TiO2 nanoparticles decorated on reduced graphene oxide as a novel adsorbent for the removal of ciprofloxacin and Cu (II) from water, Applied Surface Science. 541 (2021) 148400. https://doi.org/10.1016/j.apsusc.2020.148400 https://doi.org/10.1016/j.matchemphys.2020.122917
[91]    J. Rong, K., Wang, J., Zhang, Z., & Zhang, Green synthesis of iron nanoparticles using Korla fragrant pear peel extracts for the removal of aqueous Cr (VI), Ecological Engineering. 149 (2020) 105793. https://doi.org/10.1016/j.ecoleng.2020.105793
[92]    Z. Lin, Z., Weng, X., Owens, G., & Chen, Simultaneous removal of Pb (II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract, Journal of Cleaner Production. 242 (2020) 118476. https://doi.org/10.1016/j.jclepro.2019.118476
[93]    I. Shad, S., Belinga-Desaunay-Nault, M. F. A., Bashir, N., & Lynch, Removal of contaminants from canal water using microwave synthesized zero valent iron nanoparticles, Environmental Science: Water Research & Technology. 6 (2020) 3057–3065. DOI: 10.1039/D0EW00157K
[94]    Z. Pan, Z., Lin, Y., Sarkar, B., Owens, G., & Chen, Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal, Journal of Colloid and Interface Science. 558 (2020) 106–114. https://doi.org/10.1016/j.jcis.2019.09.106
[95]    Z. Lin, Y., Jin, X., Khan, N. I., Owens, G., & Chen, Efficient removal of As (Ⅲ) by calcined green synthesized bimetallic Fe/Pd nanoparticles based on adsorption and oxidation, Journal of Cleaner Production. 286 (2021) 124987. https://doi.org/10.1016/j.jclepro.2020.124987
[96]    X. Wang, Y., Lin, N., Gong, Y., Wang, R., & Zhang, Cu–Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr (VI): Characterization, performance, and mechanisms, Chemosphere. 280 (2021) 130663. https://doi.org/10.1016/j.chemosphere.2021.130663
[97]    Z. Lin, Y., Jin, X., Khan, N. I., Owens, G., & Chen, Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater, Journal of Environmental Management. 301 (2022) 113838. https://doi.org/10.1016/j.jenvman.2021.113838
[98]    Y.M. Khairy, G. M., Hesham, A. M., Jahin, H. E. S., El-Korashy, S. A., & Awad, Green synthesis of a novel eco-friendly hydrochar from Pomegranate peels loaded with iron nanoparticles for the removal of copper ions and methylene blue from aqueous solutions, Journal of Molecular Liquids. 368 (2022) 120722. https://doi.org/10.1016/j.molliq.2022.120722
[99]    Z. Pan, Z., Gao, Q., & Chen, Removal of As (Ⅲ) and As (Ⅴ) from mine groundwater using bimetallic Fe/Cu nanoparticles, Process Safety and Environmental Protection. 180 (2023) 192–204. https://doi.org/10.1016/j.psep.2023.10.014
[100]  H. Chen, H., Li, Y., Wang, Z., Wang, D., Feng, L., Li, S., ... & Wang, A selective colorimetric and efficient removal strategy for mercury (II) in aquatic system using mesoporous Fe3O4-loaded silver probes, Analyst. (2024). https://doi.org/10.1039/D4AN00052H
[101]  F. Hong, X., Ding, C., Shi, M., Ding, Z., Du, P., Xia, M., & Wang, Easy separation dual-function Cu2O@ LDH@ Fe3O4 adsorbent for the removal of Cr (VI) under dark conditions: Experimental and mechanistic study, Separation and Purification Technology. 332 (2024) 125734. https://doi.org/10.1016/j.seppur.2023.125734
[102]  W.M. (2024). Ferenj, A. E., Kabtamu, D. M., Assen, A. H., Gedda, G., Muhabie, A. A., Berrada, M., & Girma, Hagenia abyssinica-Biomediated Synthesis of a Magnetic Fe3O4/NiO Nanoadsorbent for Adsorption of Lead from Wastewater, ACS Omega. (2024). https://doi.org/10.1021/acsomega.3c08151
[103]  V. Manojkumar, M. S., Mohan, S., Thangamani, C., & Shanmugam, Removal of heavy metals by using magnetically reusable Fe3O4@ ZnO nanocomposites from Andrographis paniculata leaf extract: a greener way to remove industrial effluents., Journal of the Iranian Chemical Society. 20 (2023) 2767–2779. https://doi.org/10.1007/s13738-023-02874-y
[104]  D. Rajput, M. K., Hazarika, R., & Sarma, Removal of As (III)/As (V) from aqueous solution using newly developed thiosalicylic acid coated magnetite [TSA@ Fe3O4] nanoparticles, Environmental Science and Pollution Research. 30 (2023) 23348–23362. https://doi.org/10.1007/s11356-022-23852-6
[105]  N.N. Mokubung, K. E., Ndlovu, L. N., Lau, W. J., Nxumalo, E. N., & Gumbi, Enhanced adsorptive removal of As (V) ions in aqueous solution using polyethersulfone ultrafiltration mixed matrix membranes impregnated with 3‐aminopropyltriethoxysilane modified magnetite Fe3O4 nanoparticles, Journal of Applied Polymer Science. (2023) e53944. https://doi.org/10.1002/app.53944
[106]  F.T. Alswat, A. A., Ashmali, A. M., Alqasmi, T. M., Alhassani, H. R., & Alshorifi, Role of nanohybrid NiO–Fe3O4 in enhancing the adsorptive performance of activated carbon synthesized from Yemeni-Khat leave in removal of Pb (II) and Hg (II) from aquatic systems, Heliyon. 9 (2023).
[107]  M.J. Venkateswarlu, S., Yoon, M., & Kim, An environmentally benign synthesis of Fe3O4 nanoparticles to Fe3O4 nanoclusters: Rapid separation and removal of Hg (II) from an aqueous medium, Chemosphere. 286 (2022) 131673. https://doi.org/10.1016/j.chemosphere.2021.131673
[108]  S. Pranudta, A., Klysubun, W., El-Moselhy, M. M., & Padungthon, Synthesis optimization and X-ray absorption spectroscopy investigation of polymeric anion exchanger supported binary Fe/Mn oxides nanoparticles for enhanced As (III) removal, Reactive and Functional Polymers. 147 (2020) 104441. https://doi.org/10.1016/j.chemosphere.2021.131673
[109]  T. Zhang, Q., Tan, X., & Yu, Effectively arsenic (V) and fluoride removal in geothermal water using magnetic Fe3O4@ MgO nanoparticles, Chinese Chemical Letters. 34 (2023) 107748. https://doi.org/10.1016/j.reactfunctpolym.2019.104441
[110]  R.M. Salih, S. K., Ali, L. I. A., Omar, K. A., & Mustafa, Adsorptive performance of modified CoFe2O4@ SiO2 magnetic nanoparticles for removal of toxic Cd (II) from aqueous solutions and study their kinetics, isotherm, thermodynamic, and reusability, Journal of the Iranian Chemical Society. 20 (2023) 3009–3022. https://doi.org/10.1007/s13738-023-02893-9
[111]  A. Ebrahimpour, E., & Kazemi, Mercury (II) and lead (II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe3O4@ SiO2-SH polymer nanocomposite, Environmental Science and Pollution Research. 30 (2023) 13605–13623. https://doi.org/10.1007/s11356-022-23055-z
[112]  E. Saberi, A., Sadeghi, M., & Alipour, Design of AgNPs-base starch/PEG-poly (acrylic acid) hydrogel for removal of mercury (II), Journal of Polymers and the Environment. 28 (2020) 906–917. https://doi.org/10.1007/s10924-020-01651-9
[113]  C. Wang, Y., Kang, C., Li, X., Hu, Q., & Wang, Ag NPs decorated C–TiO2/Cd0. 5Zn0. 5S Z-scheme heterojunction for simultaneous RhB degradation and Cr (VI) reduction, Environmental Pollution. 286 (2021) 117305. https://doi.org/10.1016/j.envpol.2021.117305
[114]  H. Moustafa, H., Shemis, M. A., Ahmed, E. M., & Isawi, Improvement of hybrid polyvinyl chloride/dapsone membrane using synthesized silver nanoparticles for the efficient removal of heavy metals, microorganisms, and phosphate and nitrate compounds from polluted water, RSC Advances. 14 (2024) 19680–19700. DOI: 10.1039/D4RA03810J
[115]  H.M. El Shahawy, A., Mubarak, M. F., El Shafie, M., & Abdulla, Fe (III) and Cr (VI) ions’ removal using AgNPs/GO/chitosan nanocomposite as an adsorbent for wastewater treatment, RSC Advances. 12 (2022) 17065–17084. DOI: 10.1039/D2RA01612E
[116]  S. Moradi, H., Sabbaghi, S., Mirbagheri, N. S., Chen, P., Rasouli, K., Kamyab, H., & Chelliapan, Removal of chloride ion from drinking water using Ag NPs-Modified bentonite: Characterization and optimization of effective parameters by response surface methodology-central composite design, Environmental Research. 223 (2023). https://doi.org/10.1016/j.envres.2023.115484
[117]  X. Xie, W., Pakdel, E., Liang, Y., Liu, D., Sun, L., & Wang, Natural melanin/TiO2 hybrids for simultaneous removal of dyes and heavy metal ions under visible light, Journal of Photochemistry and Photobiology A: Chemistry. 389 (2020) 112292. https://doi.org/10.1016/j.jphotochem.2019.112292
[118]  J.H.Z. Druzian, D. M., Muraro, P. C. L., Oviedo, L. R., da Costa, M. L., Wouters, R. D., Loureiro, S. N., ... & dos Santos, Removal of Hg2+ ions by adsorption using (TiO2@ MnO2)-NPs nanocomposite, Journal of Material Cycles and Waste Management. 25 (2023) 2691–2705. https://doi.org/10.1007/s10163-023-01743-3
[119]  K. Nthwane, Y. B., Fouda-Mbanga, B. G., Thwala, M., & Pillay, Synthesis and characterization of MC/TiO2 NPs nanocomposite for removal of Pb2+ and reuse of spent adsorbent for blood fingerprint detection, ACS Omega. 8 (2023) 26725–26738. https://doi.org/10.1021/acsomega.2c05765
[120]  P. Sethy, N. K., Arif, Z., Mishra, P. K., & Kumar, Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater, Green Processing and Synthesis. 9 (2020) 171–181. https://doi.org/10.1515/gps-2020-0018
[121]  M. Banivaheb, S., Dan, S., Hashemipour, H., & Kalantari, Synthesis of modified chitosan TiO2 and SiO2 hydrogel nanocomposites for cadmium removal, Journal of Saudi Chemical Society. 25 (2021) 101283. https://doi.org/10.1016/j.jscs.2021.101283
[122]  S. Mon, P. P., Cho, P. P., Vidyasagar, D., Ghosal, P., Madras, G., & Challapalli, Synergistic sorption: Enhancing arsenic (V) removal using biochar decorated with cerium oxide composite, Materials Today Sustainability. (2024) 100675. https://doi.org/10.1016/j.mtsust.2024.100675
[123]  F. Kashyap, K., Moharana, M., Pattanayak, S. K., & Khan, Effective Removal of Pb (II), Cr (VI), and Cd (II) Ions from Water Using Environmentally Friendly Cerium Oxide Nanoparticles Synthesized from Pods of Pisum sativum, Water, Air, & Soil Pollution. 235 (2024) 276. https://doi.org/10.1007/s11270-024-07092-7
[124]  P. Pal, D. B., Selvasembian, R., & Singh, Cadmium removal by composite copper oxide/ceria adsorbent from synthetic wastewater, Biomass Conversion and Biorefinery. 13 (2023) 7633–7642. https://doi.org/10.1007/s13399-021-01534-6
[125]  A.H. Masood, N., Irshad, M. A., Nawaz, R., Abbas, T., Abdel-Maksoud, M. A., AlQahtani, W. H., ... & Abeed, Green synthesis, characterization and adsorption of chromium and cadmium from wastewater using cerium oxide nanoparticles; reaction kinetics study, Journal of Molecular Structure. 1294 (2023) 136563. https://doi.org/10.1016/j.molstruc.2023.136563
[126]  C. Yang, W., Wang, Z., Wei, Y., Xia, Y., Zhu, Z., & Liu, High-efficiency and fast removal of As (III) from water by cerium oxide needles decorated macroporous carbon sponge, Chemical Engineering Journal. 446 (2022) 136740. https://doi.org/10.1016/j.cej.2022.136740
[127]  R.K. Sahu, U. K., Mandal, S., Sahu, S., Gouda, N., & Patel, Preparation and characterization of mesoporous cerium oxide for toxic As (V) removal: performance and mechanistic studies, Journal of Environmental Engineering and Landscape Management. 30 (2022) 321–330. https://doi.org/10.3846/jeelm.2022.16749
[128]  J. Nikić, J., Watson, M. A., Isakovski, M. K., Tubić, A., Šolić, M., Kordić, B., & Agbaba, Synthesis, characterization and application of magnetic nanoparticles modified with Fe-Mn binary oxide for enhanced removal of As (III) and As (V), Environmental Technology & Innovation. 42 (2021) 2539. https://doi.org/10.2174/1872210514999201228203806
[129]  F. Zhao, J., Liu, J., Li, N., Wang, W., Nan, J., Zhao, Z., & Cui, Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4-MnO2: Adsorption behavior and process study, Chemical Engineering Journal. 304 (2016) 737–746. https://doi.org/10.1016/j.cej.2016.07.003
[130]  M. Imran, M., Iqbal, M. M., Iqbal, J., Shah, N. S., Khan, Z. U. H., Murtaza, B., ... & Rizwan, Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: modeling, thermodynamics and reusability, Journal of Hazardous Materials. 401 (2021) 12338. https://doi.org/10.1016/j.jhazmat.2020.123338
[131]  W. Abuhatab, S., El-Qanni, A., Al-Qalaq, H., Hmoudah, M., & Al-Zerei, Effective adsorptive removal of Zn2+, Cu2+, and Cr3+ heavy metals from aqueous solutions using silica-based embedded with NiO and MgO nanoparticles, Journal of Environmental Management. 268 (2020) 110713. https://doi.org/10.1016/j.jenvman.2020.110713
[132]  M. Ghoniem, M. G., Ben Aissa, M. A., Ali, F. A. M., & Khairy, Efficient and rapid removal of Pb (II) and Cu (II) heavy metals from aqueous solutions by MgO nanorods., Inorganics. 10 (2022) 256. https://doi.org/10.3390/inorganics10120256
[133]  A. Ismail, M., Jobara, A., Bekouche, H., Abd Allateef, M., Ben Aissa, M. A., & Modwi, Impact of Cu Ions removal onto MgO nanostructures: Adsorption capacity and mechanism, Journal of Materials Science: Materials in Electronics. 33 (2022) 12500–12512. https://doi.org/10.1007/s10854-022-08207-8
[134]  M.Y. El-Feky, H. H., Behiry, M. S., Amin, A. S., & Nassar, Facile fabrication of nano-sized SiO2 by an improved sol–gel route: as an adsorbent for enhanced removal of Cd (II) and Pb (II) ions, Journal of Inorganic and Organometallic Polymers and Materials. 32 (2022) 1129–1141. https://doi.org/10.1007/s10904-021-02214-8
[135]  P.S. Jadhav, S. A., Garud, H. B., Thoravat, S. S., Patil, V. S., Shinde, P. S., Burungale, S. H., & Patil, Synthesis and testing of functional mesoporous silica nanoparticles for removal of Cr (VI) ions from water, Biointerface Res. Appl. Chem. 11 (2021) 8599–8607. https://doi.org/10.33263/BRIAC112.85998607
[136]  E.A. Giorgi, F., Coglitore, D., Curran, J. M., Gilliland, D., Macko, P., Whelan, M., ... & Patterson, The influence of inter-particle forces on diffusion at the nanoscale, Scientific Reports. 9 (2019) 12689. https://doi.org/10.1038/s41598-019-48754-5
[137]  Z. Xue, S., Xiao, Y., Wang, G., Fan, J., Wan, K., He, Q., ... & Miao, Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 616 (2021) 126333. https://doi.org/10.1016/j.colsurfa.2021.126333
[138]  S. Nianga-Obambi, P. S., Douma, D. H., Etindele, A. J., Raji, A. T., Malonda-Boungou, B. R., M’Passi-Mabiala, B., & Kenmoe, Adsorption Behaviour of Pb and Cd on Graphene Oxide Nanoparticle from First-Principle Investigations, Materials. 17 (2024) 2831. https://doi.org/10.3390/ma17122831
[139]  Z. Chen, W., Xie, H., Jiang, N., Guo, X., & Liu, Synthesis of magnetic sodium lignosulfonate hydrogel (Fe3O4@ LS) and its adsorption behavior for Cd2+ in wastewater, International Journal of Biological Macromolecules. 245 (2023) 125498. https://doi.org/10.1016/j.ijbiomac.2023.125498
[140]  X. Dai, S., Wang, N., Qi, C., Wang, X., Ma, Y., Yang, L., ... & Wang, Preparation of core-shell structure Fe3O4@ C@ MnO2 nanoparticles for efficient elimination of U (VI) and Eu (III) ions, Science of The Total Environment. 685 (2019). https://doi.org/10.1016/j.scitotenv.2019.06.292
[141]  Q. Mohan, B., Kumar, S., Kumar, A., Kumar, K., Modi, K., Jiao, T., & Chen, Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal, Separation and Purification Technology. 297 (2022) 121471. https://doi.org/10.1016/j.seppur.2022.121471
[142]  R.P. Sun, Y., Gu, Y., Li, X., & Singh, Synthesis of novel thiol-modified lysozyme coated magnetic nanoparticles for the high selective adsorption of Hg (II), Reactive and Functional Polymers. 170 (2022) 105129. https://doi.org/10.1016/j.reactfunctpolym.2021.105129
[143]  and P.A. Lingamdinne, Lakshmi Prasanna, Yoon-Young Chang, Jae-Kyu Yang, Jiwan Singh, Eun-Ha Choi, Masaharu Shiratani, Janardhan Reddy Koduru, Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals, Chemical Engineering Journal. 307 (2017) 74–84. https://doi.org/10.1016/j.cej.2016.08.067
[144]  A. Daoud, W., Ebadi, T., & Fahimifar, Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer, Water Science and Technology. 71 (2015) 667–674. https://doi.org/10.2166/wst.2014.493
[145]  W. Lee, Y. M., Bang, S., Yoon, H., Bae, S. H., Hong, S., Cho, K. B., ... & Nam, Tuning the Redox Properties of a Nonheme Iron (III)–Peroxo Complex Binding Redox‐Inactive Zinc Ions by Water Molecules, Chemistry–A European Journal. 21 (2015). https://doi.org/10.1002/chem.201502143
[146]  Y. Chen, M., Guo, Q., Cui, J., Lv, W., & Yao, Enhanced sorption and reduction of Cr (VI) by the flowerlike nanocomposites combined with molybdenum disulphide and polypyrrole., Environmental Technology & Innovation. 43 (2022) 2796–2808. https://doi.org/10.1080/09593330.2021.1903566
[147]  A. Calderon, B., & Fullana, Heavy metal release due to aging effect during zero valent iron nanoparticles remediation, Water Research. 83 (2015) 1–9. https://doi.org/10.1016/j.watres.2015.06.004
[148]  J. Cai, D., Zhang, Y., Li, J., Hu, D., Wang, M., Zhang, G., & Yuan, Intermolecular interactions in mixed dye systems and the effects on dye wastewater treatment processes, RSC Advances. 14 (2024) 373–381. DOI: 10.1039/D3RA01733H
[149]  J. Pstrowska, K., Szyja, B. M., Czapor‐Irzabek, H., Kiersnowski, A., & Walendziewski, The Properties and Activity of TiO2/beta‐SiC Nanocomposites in Organic Dyes Photodegradation, Photochemistry and Photobiology. 93 (2017) 558–568. https://doi.org/10.1111/php.12705
[150]  S. Alahmad, W., Hedhili, F., Al-Shomar, S. M., Albaqawi, H. S., Al-Shammari, N. A., & Abdelrahman, Modeling sustainable photocatalytic degradation of acidic dyes using Jordanian nano-Kaolin–TiO2 and solar energy: Synergetic mechanistic insights, Heliyon. 10 (2024).
[151]  H. Kumar, K. Y., Muralidhara, H. B., Nayaka, Y. A., Balasubramanyam, J., & Hanumanthappa, Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution, Powder Technology. 246 (2013). https://doi.org/10.1016/j.powtec.2013.05.017
[152]  A. Haspulat Taymaz, B., Demir, M., Kamış, H., Orhan, H., Aydoğan, Z., & Akıllı, Facile and green synthesis of ZnO nanoparticles for effective photocatalytic degradation of organic dyes and real textile wastewater, International Journal of Phytoremediation. 25 (2023) 1306–1317. https://doi.org/10.1080/15226514.2022.2150142
[153]  T.A. Lanjwani, M. F., Tuzen, M., Khuhawar, M. Y., & Saleh, Trends in photocatalytic degradation of organic dye pollutants using nanoparticles: a review, Inorganic Chemistry Communications. 159 (2024) 111613. https://doi.org/10.1016/j.inoche.2023.111613