[1] D. A. Narciso, F. Martins, Application of machine learning tools for energy efficiency in industry: A review, Energy Reports 6 (2020) 1181– 1199.
[2] F. S´anchez, P. Hartlieb, Innovation in the mining industry: Technological trends and a case study of the challenges of disruptive innovation, Mining, Metallurgy & Exploration 37 (5) (2020) 1385– 1399.
[3] S. Qassimi, E. H. Abdelwahed, Disruptive innovation in mining industry 4.0, Distributed Sensing and Intelligent Systems: Proceedings of ICDSIS 2020 (2021) 313–325.
[4] Z. Hyder, K. Siau, F. Nah, Artificial intelligence, machine learning, and autonomous technologies in mining industry, Journal of Database Management (JDM) 30 (2) (2019) 67–79.
[5] A. Bendaouia, E. H. Abdelwahed, S. Qassimi, A. Boussetta, A. Benhayoun, I. Benzakour, O. Amar, Y. Zennayi, F. Bourzeix, K. Ba¨ına, et al., Digital transformation of the flotation monitoring towards an online analyzer, in: International Conference on Smart Applications and Data Analysis, Springer, 2022, pp. 325–338.
[6] S. Es-sahly, A. Elbasbas, K. Naji, B. Lakssir, H. Faqir, S. Dadi, R. Rabie, Nir-spectroscopy and machine learning models to pre-concentrate copper hosted within sedimentary rocks, Mining, Metallurgy & Exploration 41 (4) (2024) 1979–1995.
[7] M.-J. Li, W.-Q. Tao, Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry, Applied Energy 187 (2017) 203–215.
[8] J. T. McCoy, L. Auret, Machine learning applications in minerals pro- cessing: A review, Minerals Engineering 132 (2019) 95–109.
[9] O. Hasidi, E. H. Abdelwahed, A. Qazdar, A. Boulaamail, M. Krafi, I. Benzakour, F. Bourzeix, S. Ba¨ına, K. Ba¨ına, M. Cherkaoui, et al., Digital twins-based smart monitoring and optimisation of mineral processing industry, in: International Conference on Smart Applications and Data Analysis, Springer, 2022, pp. 411–424.
[10] S. Ma, Y. Zhang, J. Lv, Y. Ge, H. Yang, L. Li, Big data driven predictive production planning for energy-intensive manufacturing industries, Energy 211 (2020) 118320.
[11] B. Mahesh, Machine learning algorithms-a review, International Journal of Science and Research (IJSR).[Internet] 9 (1) (2020) 381–386.
[12] D. Radchenko, A. Bondarenko, Mining engineering system as an energy asset in industry 4.0, in: E3S Web of Conferences, Vol. 58, EDP Sciences, 2018, p. 01009.
[13] A. Rihi, S. Ba¨ına, F.-z. Mhada, E. Elbachari, H. Tagemouati, M. Guer- boub, I. Benzakour, Predictive maintenance in mining industry: Grinding mill case study, Procedia Computer Science 207 (2022) 2483–2492.
[14] M. Imam, K. Ba¨ına, Y. Tabii, E. M. Ressami, Y. Adlaoui, I. Benzakour, E. H. Abdelwahed, The future of mine safety: a comprehensive review of anti-collision systems based on computer vision in underground mines, Sensors 23 (9) (2023) 4294.
[15] K. Clero, M. Nadour, S. Ed-Diny, M. Achalhi, M. Cherkaoui, H. Ait Ab- delali, S. El Fkihi, I. Benzakour, S. Rziki, H. Tagemouati, et al., A review of the use of thermal imaging and computer vision for pattern recognition, Computer Science & Information Technology (CS & IT) 13 (21) (2023).
[16] T. Igogo, K. Awuah-Offei, A. Newman, T. Lowder, J. Engel-Cox, Inte- grating renewable energy into mining operations: Opportunities, challenges, and enabling approaches, Applied Energy 300 (2021) 117375.
[17] J. Jeswiet, A. Szekeres, Energy consumption in mining comminution, Procedia CIRP 48 (2016) 140–145.
[18] A. Dasgupta, A. Nath, Classification of machine learning algorithms, International Journal of Innovative Research in Advanced Engineering (IJIRAE) 3 (3) (2016) 6–11.
[19] C. Loudari, M. Cherkaoui, R. Bennani, I. El Harraki, O. Fares, M. El Ad- nani, I. Benzakour, F. Bourzeix, K. Baina, et al., Predicting grinding mill power consumption in mining: A comparative study, in: 2023 7th IEEE Congress on Information Science and Technology (CiSt), IEEE, 2023, pp. 395–399.
[20] J. Peng, W. Sun, J. Xu, G. Zhou, L. Xie, H. Han, Y. Xiao, J. Chen, Q. Li, Analyzing process parameters for industrial grinding circuit based on machine learning method, Advanced Powder Technology 34 (9) (2023) 104113.
[21] S. Avalos, W. Kracht, J. M. Ortiz, Machine learning and deep learning methods in mining operations: A data-driven sag mill energy consumption prediction application, Mining, Metallurgy & Exploration 37 (2020) 1197–1212.
[22] A. Tohry, S. C. Chelgani, S. Matin, M. Noormohammadi, Power-draw prediction by random forest based on operating parameters for an industrial ball mill, Advanced Powder Technology 31 (3) (2020) 967–972.
[23] G. Liu, K. Wang, X. Hao, Z. Zhang, Y. Zhao, Q. Xu, Sa-lstms: A new advance prediction method of energy consumption in cement raw materials grinding system, Energy 241 (2022) 122768.
[24] J. Liu, Q. Zhang, Z. Dong, X. Li, G. Li, Y. Xie, K. Li, Quantitative evaluation of the building energy performance based on short-term energy predictions, Energy 223 (2021) 120065.
[25] O. Bascur, A. Soudek, Grinding and flotation optimization using op- erational intelligence, Mining, Metallurgy & Exploration 36 (1) (2019) 139–149.
[26] R. Rajamani, P. Kumar, N. Govender, The evolution of grinding mill power models, Mining, Metallurgy & Exploration 36 (1) (2019) 151–157.
[27] Z. Ghasemi, F. Neumann, M. Zanin, J. Karageorgos, L. Chen, A com- parative study of prediction methods for semi-autogenous grinding mill throughput, Minerals Engineering 205 (2024) 108458.
[28] G. Lin, A. Lin, J. Cao, Multidimensional knn algorithm based on eemd and complexity measures in financial time series forecasting, Expert Systems with Applications 168 (2021) 114443.
[29] P. C. d. L. e Silva, C. A. S. Junior, M. A. Alves, R. Silva, M. W. Cohen, F. G. Guimar˜aes, Forecasting in non-stationary environments with fuzzy time series, Applied Soft Computing 97 (2020) 106825.
[30] R. Gao, L. Du, K. F. Yuen, Robust empirical wavelet fuzzy cognitive map for time series forecasting, Engineering Applications of Artificial Intelligence 96 (2020) 103978.