Improving energy efficiency in the mining Industry: an LSTM-ANN predictive model for sieve refusal in grinding mills

Document Type : Research Paper

Authors

1 Laboratory of Applied Mathematics and Decision-Making Informatics (LMAID), National School of Mines of Rabat (ENSMR), Rabat, Morocco.

2 Digitalization and Microelectronic Smart Devices, MAScIR, Rabat, Morocco.

3 LISI Laboratory University of Cadi Ayyad, UCA, Marrakech, Morocco.

4 Reminex Research Center, MANAGEM Group, Marrakech.

5 Embedded Systems and Artificial Intelligence Department, MAScIR, Rabat, Morocco.

6 Al-Qualsadi Research and Development Team, ENSIAS, Rabat, Morocco.

10.22059/ijmge.2025.383890.595204

Abstract

The integration of Artificial Intelligence (AI) within Mine 4.0 has significantly advanced the mining industry by enhancing performance, efficiency, safety, and overall productivity. Despite these advancements, a critical gap exists in predicting sieve refusal, a key parameter affecting grinding mill efficiency and product quality, particularly when accounting for the temporal and nonlinear dependencies inherent in mining data. This study introduces a hybrid predictive model that combines Long Short-Term Memory networks (LSTM) with Artificial Neural Networks (ANN) to predict sieve refusal in grinding mills utilizing actual process and energy data from mining industry databases. The LSTM component captured the temporal dynamics and time-delayed dependencies of variables and power consumption. Concurrently, the ANN component modeled complex, nonlinear relationships among input variables. This hybrid approach effectively addressed the intrinsic characteristics of mining data, which are often overlooked in traditional models. Comparative analyses demonstrated that the proposed LSTM-ANN model significantly outperformed existing advanced regression and deep learning methods, establishing it as a state-of-the-art solution for sieve refusal prediction. The enhanced predictive accuracy provided direct support for operational planning and scheduling, contributing to improved energy efficiency and cost-effectiveness in mining operations. By addressing the underexplored temporal and spatial interrelations between variables and sieve refusal, this research fills a notable gap in the application of deep learning to grinding mill operations. The findings underscore the transformative potential of advanced AI models in optimizing mining practices, aligning with the broader objectives of Mine 4.0 to leverage intelligent data analysis for operational excellence.

Keywords

Main Subjects


[1]    D. A. Narciso, F. Martins, Application of machine learning tools for energy efficiency in industry: A review, Energy Reports 6 (2020) 1181– 1199.
[2]    F. S´anchez, P. Hartlieb, Innovation in the mining industry: Technological trends and a case study of the challenges of disruptive innovation, Mining, Metallurgy & Exploration 37 (5) (2020) 1385–  1399.
[3]    S. Qassimi, E. H. Abdelwahed, Disruptive innovation in mining industry 4.0, Distributed Sensing and Intelligent Systems: Proceedings of ICDSIS 2020 (2021) 313–325.
[4]    Z. Hyder, K. Siau, F. Nah, Artificial intelligence, machine learning, and autonomous technologies in mining industry, Journal of Database Management (JDM) 30 (2) (2019) 67–79.
[5]    A. Bendaouia, E. H. Abdelwahed, S. Qassimi, A. Boussetta, A. Benhayoun, I. Benzakour, O. Amar, Y. Zennayi, F. Bourzeix, K. Ba¨ına, et al., Digital transformation of the flotation monitoring towards an online analyzer, in: International Conference on Smart Applications and Data Analysis, Springer, 2022, pp. 325–338.
[6]    S. Es-sahly, A. Elbasbas, K. Naji, B. Lakssir, H. Faqir, S. Dadi, R. Rabie, Nir-spectroscopy and machine learning models to pre-concentrate copper hosted within sedimentary rocks, Mining, Metallurgy & Exploration 41 (4) (2024) 1979–1995.
[7]    M.-J. Li, W.-Q. Tao, Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry, Applied Energy 187 (2017) 203–215.
[8]    J. T. McCoy, L. Auret, Machine learning applications in minerals pro- cessing: A review, Minerals Engineering 132 (2019) 95–109.
[9]    O. Hasidi, E. H. Abdelwahed, A. Qazdar, A. Boulaamail, M. Krafi, I. Benzakour, F. Bourzeix, S. Ba¨ına, K. Ba¨ına, M. Cherkaoui, et al., Digital twins-based smart monitoring and optimisation of mineral processing industry, in: International Conference on Smart Applications and Data Analysis, Springer, 2022, pp. 411–424.
[10]    S. Ma, Y. Zhang, J. Lv, Y. Ge, H. Yang, L. Li, Big data driven predictive production planning for energy-intensive manufacturing industries, Energy 211 (2020) 118320.
[11]    B. Mahesh, Machine learning algorithms-a review, International Journal of Science and Research (IJSR).[Internet] 9 (1) (2020) 381–386.
[12]    D. Radchenko, A. Bondarenko, Mining engineering system as an energy asset in industry 4.0, in: E3S Web of Conferences, Vol. 58, EDP Sciences, 2018, p. 01009.
[13]    A. Rihi, S. Ba¨ına, F.-z. Mhada, E. Elbachari, H. Tagemouati, M. Guer- boub, I. Benzakour, Predictive maintenance in mining industry: Grinding mill case study, Procedia Computer Science 207 (2022) 2483–2492.
[14]    M. Imam, K. Ba¨ına, Y. Tabii, E. M. Ressami, Y. Adlaoui, I. Benzakour, E. H. Abdelwahed, The future of mine safety: a comprehensive review of anti-collision systems based on computer vision in underground mines, Sensors 23 (9) (2023) 4294.
[15]    K. Clero, M. Nadour, S. Ed-Diny, M. Achalhi, M. Cherkaoui, H. Ait Ab- delali, S. El Fkihi, I. Benzakour, S. Rziki, H. Tagemouati, et al., A review of the use of thermal imaging and computer vision for pattern recognition, Computer Science & Information Technology (CS & IT) 13 (21) (2023).
[16]    T. Igogo, K. Awuah-Offei, A. Newman, T. Lowder, J. Engel-Cox, Inte- grating renewable energy into mining operations: Opportunities, challenges, and enabling approaches, Applied Energy 300 (2021) 117375.
[17]    J. Jeswiet, A. Szekeres, Energy consumption in mining comminution, Procedia CIRP 48 (2016) 140–145.
[18]    A. Dasgupta, A. Nath, Classification of machine learning algorithms, International Journal of Innovative Research in Advanced Engineering (IJIRAE) 3 (3) (2016) 6–11.
[19]    C. Loudari, M. Cherkaoui, R. Bennani, I. El Harraki, O. Fares, M. El Ad- nani, I. Benzakour, F. Bourzeix, K. Baina, et al., Predicting grinding mill power consumption in mining: A comparative study, in: 2023 7th IEEE Congress on Information Science and Technology (CiSt), IEEE, 2023, pp. 395–399.
[20]    J. Peng, W. Sun, J. Xu, G. Zhou, L. Xie, H. Han, Y. Xiao, J. Chen, Q. Li, Analyzing process parameters for industrial grinding circuit based on machine learning method, Advanced Powder Technology 34 (9) (2023) 104113.
[21]    S. Avalos, W. Kracht, J. M. Ortiz, Machine learning and deep learning methods in mining operations: A data-driven sag mill energy consumption prediction application, Mining, Metallurgy & Exploration 37 (2020) 1197–1212.
[22]    A. Tohry, S. C. Chelgani, S. Matin, M. Noormohammadi, Power-draw prediction by random forest based on operating parameters for an industrial ball mill, Advanced Powder Technology 31 (3) (2020) 967–972.
[23]    G. Liu, K. Wang, X. Hao, Z. Zhang, Y. Zhao, Q. Xu, Sa-lstms: A new advance prediction method of energy consumption in cement raw materials grinding system, Energy 241 (2022) 122768.
[24]    J. Liu, Q. Zhang, Z. Dong, X. Li, G. Li, Y. Xie, K. Li, Quantitative evaluation of the building energy performance based on short-term energy predictions, Energy 223 (2021) 120065.
[25]    O. Bascur, A. Soudek, Grinding and flotation optimization using op- erational intelligence, Mining, Metallurgy & Exploration 36 (1) (2019) 139–149.
[26]    R. Rajamani, P. Kumar, N. Govender, The evolution of grinding mill power models, Mining, Metallurgy & Exploration 36 (1) (2019) 151–157.
[27]    Z. Ghasemi, F. Neumann, M. Zanin, J. Karageorgos, L. Chen, A com- parative study of prediction methods for semi-autogenous grinding mill throughput, Minerals Engineering 205 (2024) 108458.
[28]    G. Lin, A. Lin, J. Cao, Multidimensional knn algorithm based on eemd and complexity measures in financial time series forecasting, Expert Systems with Applications 168 (2021) 114443.
[29]    P. C. d. L. e Silva, C. A. S. Junior, M. A. Alves, R. Silva, M. W. Cohen, F. G. Guimar˜aes, Forecasting in non-stationary environments with fuzzy time series, Applied Soft Computing 97 (2020) 106825.
[30]    R. Gao, L. Du, K. F. Yuen, Robust empirical wavelet fuzzy cognitive map for time series forecasting, Engineering Applications of Artificial Intelligence 96 (2020) 103978.