[1] Ağbay, E., & Topal, T. (2020). Evaluation of twin tunnel-induced surface ground deformation by empirical and numerical analyses (NATM part of Eurasia tunnel, Turkey). Computers and Geotechnics, 119, 103367. doi:
https://doi.org/10.1016/
j.compgeo.2019.103367
[2] Khan, M. U., Tahir, M. U., Emad, M. Z., Raza, M. A., & Saki, S. A. (2023). Investigating strength anisotropy of plain and steel fiber reinforced shotcrete. Mining, Metallurgy & Exploration, 40(1), 291-303.doi:
https://doi.org/10.1007/s42461-022-00715-9
[3] De la Fuente, A., Pujadas, P., Blanco, A., & Aguado, A. (2012). Experiences in Barcelona with the use of fibres in segmental linings. Tunnelling and Underground Space Technology, 27(1), 60-71.doi:
https://doi.org/10.1016/j.tust.2011.07.001
[4] Balagopal, V., Panicker, A. S., Arathy, M. S., Sandeep, S., & Pillai, S. K. (2022). Influence of fibers on the mechanical properties of cementitious composites-a review. Materials Today: Proceedings, 65, 1846-1850. doi:
https://doi.org/10.1016/
j.matpr.2022.05.023
[5] Choumanidis, D., Badogiannis, E., Nomikos, P., & Sofianos, A. (2016). The effect of different fibres on the flexural behaviour of concrete exposed to normal and elevated temperatures. Construction and Building Materials, 129, 266-277. doi:
https://doi.org/10.1016/j.conbuildmat.2016.10.089
[6] Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and building materials, 103, 8-14. doi:
https://doi.org/10.1016/j.conbuildmat.2015.11.028
[7] Congro, M., de Alencar Monteiro, V. M., de Andrade Silva, F., Roehl, D., & Brandão, A. L. (2023). A novel hybrid model to design fiber-reinforced shotcrete for tunnel linings. Tunnelling and Underground Space Technology, 132, 104881. doi:
[8] Naseri, S., & Bahrani, N. (2021). Design of initial shotcrete lining for a mine shaft using two-dimensional finite element models considering excavation advance rate. Geotechnical and Geological Engineering, 39, 4709-4732.doi:
https://doi.org/10.1007/s10706-021-01773-4
[9] Neuner, M., Schreter, M., Gamnitzer, P., & Hofstetter, G. (2020). On discrepancies between time-dependent nonlinear 3D and 2D finite element simulations of deep tunnel advance: A numerical study on the Brenner Base Tunnel. Computers and Geotechnics, 119, 103355. doi:
https://doi.org/10.1016/
j.compgeo.2019.103355
[10] Alejano, L. R., Rodriguez-Dono, A., Alonso, E., & Manín, G. F. (2009). Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. Tunnelling and Underground Space Technology, 24(6), 689-705. doi:
[11] Alonso, E., Alejano, L. R., Varas, F., Fdez‐Manin, G., & Carranza‐Torres, C. (2003). Ground response curves for rock masses exhibiting strain‐softening behaviour. International journal for numerical and analytical methods in geomechanics, 27(13), 1153-1185. doi:
[12] Neuner, M., Schreter, M., Gamnitzer, P., & Hofstetter, G. (2020). On discrepancies between time-dependent nonlinear 3D and 2D finite element simulations of deep tunnel advance: A numerical study on the Brenner Base Tunnel. Computers and Geotechnics, 119, 103355. doi:
https://doi.org/10.1016/
j.compgeo.2019.103355
[13] Chortis, F., & Kavvadas, M. (2021). Three-dimensional numerical investigation of the interaction between twin tunnels. Geotechnical and Geological Engineering, 39(8), 5559-5585.doi:
https://doi.org/10.1007/s10706-021-01845-5
[14] Weifner, T., & Bergmeister, K. (2020). 3D simulations for the Brenner Base Tunnel considering interaction effects. In Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art (pp. 3355–3364). CRC Press.
[15] Vitali, O. P., Celestino, T. B., & Bobet, A. (2022). Construction strategies for a NATM tunnel in Sa˜o Paulo, Brazil, in residual soil. Underground Space, 7, 1–18. doi:
https://doi.org/10.1016/
j.undsp.2021.04.002
[16] Gamnitzer, P., Neuner, M., Schreter-Fleischhacker, M., Dummer, A., Mader, T., Smaniotto, S., & Hofstetter, G. (2024). Key features of numerical models for the FE-simulation of deep tunnel advance by the NATM. Underground Space, 14, 357-376. doi:
https://doi.org/10.1016/j.undsp.2023.06.007
[17] Sjölander, A., & Ansell, A. (2017). Numerical simulations of restrained shrinkage cracking in glass fibre reinforced shotcrete slabs. Advances in Civil Engineering, 2017(1), 8987626. doi:
https://doi.org/10.1155/2017/8987626
[18] Massone, L. M., & Nazar, F. (2018). Analytical and experimental evaluation of the use of fibers as partial reinforcement in shotcrete for tunnels in Chile. Tunnelling and Underground Space Technology, 77, 13-25. doi:
https://doi.org/10.1016/
j.tust.2018.03.027
[19] Larive, C., Bouteille, S., Berthoz, N., & Zappelli, S. (2020). Fiber-reinforced sprayed concrete as a permanent tunnel lining. Structural Engineering International, 30(4), 498-505. doi:
https://doi.org/10.1080/10168664.2020.1735981
[20] Sheikh, K. A., & Saif, A. (2020). Steel Fibre-Reinforced Shotcrete as an alternative to conventional concrete tunnel lining: A case study of Gulpur Hydropower Project. Geomechanics and Geoengineering, 15(4), 252-262. doi:
https://doi.org/
10.1080/17486025.2019.1639831
[21] de Alencar Monteiro, V. M., & de Andrade Silva, F. (2021). On the design of the fiber reinforced shotcrete applied as primary rock support in the Cuiabá underground mining excavations: A case study. Case Studies in Construction Materials, 15, e00784. doi:
https://doi.org/10.1016/j.cscm.2021.e00784
[22] Chiaia, B., Fantilli, A. P., & Vallini, P. (2009). Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings. Engineering Structures, 31(7), 1600-1606. doi:
https://doi.org/10.1016/j.engstruct.2009.02.037
[23] Sharghi, M., Chakeri, H., Afshin, H., Török, Á., & Dias, D. (2021). Investigation of the feasibility of using recycled steel fibers in tunnel lining segments. Tunnelling and Underground Space Technology, 110, 103826. doi:
https://doi.org/10.1016/
j.tust.2021.103826
[24] Majumder, D., Viladkar, M. N., & Singh, M. (2023). Numerical modelling of tunnels excavated in squeezing ground condition: A case study. Arabian Journal for Science and Engineering, 48(4), 4657-4673. doi:
https://doi.org/10.1007/s13369-022-07098-5
[25] Sharghi, M., Afshin, H., Chakeri, H., Dias, D., & Török, Á. (2023). Structural and environmental performance of recycled steel fiber reinforced concrete segment under the thrust force of the tunnel boring machine jacks. Structural Concrete, 24(2), 2638-2661. doi:
https://doi.org/10.1002/suco.202200538
[26] Chakeri, H., Darbor, M., Maleki, F., & Minaee, T. (2023). Experimental investigation of steel fibers’ effect on the improvement of mechanical properties of concrete segmental lining in mechanized tunneling. Rudarsko-geološko-naftni zbornik, 38(3), 55-63. doi:
https://doi.org/10.17794/rgn.2023.3.5
[27] Zhang, Z. X., Liu, C., Huang, X., Kwok, C. Y., & Teng, L. (2016). Three-dimensional finite-element analysis on ground responses during twin-tunnel construction using the URUP method. Tunnelling and Underground Space Technology, 58, 133-146. doi:
https://doi.org/10.1016/j.tust.2016.05.001
[28] Tabriz Urban Railway Organization, http://tabrizmetro.ir
/?PageID=69
[29] Chapra, S. C., & Canale, R. P. (1988). Numerical Methods for EngineersMcGraw-Hill. Inc., New York.
[1] Backus, G. E., Gilbert, F., (1967). Numerical Applications of a Formalism for Geophysical Inverse Problems. Geophysical Journal of the Royal Astronomical Society, 13, 1-3, 247–276.
[2] Backus, G.E., Gilbert, F., (1968). The Resolving power of Gross Earth Data, Geophysical Journal of the Royal Astronomical Society, 16, 169–205.
[3] Backus, G.E., Gilbert, F., (1970). Uniqueness in the Inversion of inaccurate Gross Earth Data, Philosophical Transactions of the Royal Society of London A, 266, 123-192.
[4] Mosegaard, K., Tarantola, A., (1995). Monte Carlo sampling of solutions to inverse problems. J Geophys Res Solid Earth 100(B7),12431–12447
[5] Gouveia, W. P., Scales, J. A., (1997). Resolution of seismic waveform inversion: Bayes versus Occam, Inverse Problems 13, 323–349.
[6] Moorkamp M, Jones AG, Eaton DW (2007) Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible? Geophysical Research Letters, 34(16):L16, 311
[7] Akca I, Basokur AT (2010) Extraction of structure-based geoelectric models by hybrid genetic algorithms. Geophysics 75(1):F15–F22
[8] Roy L, Sen MK, Blankenship DD, Stoffa PL, Richter TG (2005) Inversion and uncertainty estimation of gravity data using simulated annealing: an application over Lake Vostok, East Antarctica. Geophysics 70(1):J1–J12
[9] Wang R, Yin C, Wang M, Wang G (2012) Simulated annealing for controlled-source audio-frequency magnetotelluric data inversion. Geophysics 77(2):E127–E133.
[10] Reading, A. M., Cracknell, M. J., and Sambridge, M., (2011). Turning geophysical data into geological information or why a broader range of mathematical strategies is needed to better enable discovery. Preview, 151,24–29. https://doi.org/10.1071/PVv2011n151p24.
[11] Fernández-Muñiz , Z., Khaniani, H., and , J. L. (2019). Data kit inversion and uncertainty analysis. Journal of Applied Geophysics, 161, 228–238.
[12] Efron, B., (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.
[13] McLaughlin, K.L., (1988). Maximum-likelihood event magnitude estima- tion with bootstrapping for uncertainty estimation, Bull. seism. Soc. Am., 78(2), 855–862.
[14] Tichelaar, B.W. and Ruff, L.J., (1989). How good are our best models? Jack- knifing, bootstrapping, and earthquake depth, EOS, Trans. Am. geophys. Un., 55(12), 1613–1624.
[15] Shearer, P.M., (1997). Improving local earthquake locations using the l1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence, Journal of Geophysical Research, 102(B4), 8269–8283.
[16] Parsekian, A. D., and Grombacher, D. (2015). Uncertainty estimates for surface nuclear magnetic resonance water content and relaxation time profiles from bootstrap statistics. Journal of Applied Geophysics, 119, 61–70. https://doi.org/10.1016/
j.jappgeo.2015.05.005.
[17] Hertrich, M., (2008). Imaging of groundwater with nuclear magnetic resonance: Progress in Nuclear Magnetic Resonance Spectroscopy, 53, 227–248.
[18] Schnaidt, S., and Heinson, G. (2015). Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling. Geophysical Journal International, 203(1), 92–106. https://doi.org/10.1093/gji/ggv264.
[19] Campanya, J., Ledo, J., Queralt, P., Marcuello, A. and Jones, A.G., (2014). A new methodology to estimate magnetotelluric (MT) tensor relationships: estimation of local transfer-functions by combining interstation transfer- functions (ELICIT), Geophysical Journal International, 198(1), 484–494.
[20] Neukirch, M. and Garcia, X., 2014. Nonstationary magneto-telluric data processing with instantaneous parameter, Journal of Geophysical Research, 119, 1634–1654.
[21] Ebtehaj, M., Moradkhani, H., and Gupta, H. V. (2010). Improving robust-ness of hydrologic parameter estimation by the use of moving block bootstrap resampling, Water Resources Res., 46, W07515,
[22] Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann.Statist. 17 1217–1261.
[23] Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In Exploring the Limits of Bootstrap (R. Lepage and L. Billard, eds.) 225–248. Wiley, New York.
[24] Fernández Martínez, J. L., Zulima Fernández Muñiz, M and Tompkins, M. J., (2012). On the topography of the cost functional in linear and nonlinear inverse problems, Geophysics 77: W1-W15.
[25] Constable, S. C., R. L. Parker, and C. G. Constable, (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52,289–300, doi: 10.1190/1.1442303.
[26] Aster, R., Borchers, B., and Thurber, C. (2005). Parameter estimation and inverse problems. Elsevier.
[27] Ghosh, D.P., (1971). The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements Geophysical Prospecting, 19, 192-217.
[28] McNeill, J.D., (1980). Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Tech note TN-6. Geonics Ltd, Mississauga, ON, Canada.