The influence of fiber-reinforced shotcrete on the ground settlement in tunnel excavation: A case study of Tabriz metro line 2

Document Type : Research Paper

Authors

1 Department of Mining Engineering, Sahand University of Technology, Tabriz, Iran.

2 Department of Civil Engineering, Islamic Azad university, Tabriz, Iran.

10.22059/ijmge.2025.374218.595159

Abstract

In recent years, as cities expand and populations increase, the importance of public transportation, particularly subways, and underground spaces, has grown. In-situ concreting in underground areas is time-consuming, costly, and requires significant space for molding. However, shotcrete can be applied quickly with high quality and minimal space needed. The main purpose of this study is to investigate the settlement of the ground surface resulting from tunnel excavation using 3D numerical modelling. This study investigated the use of shotcrete reinforced with recycled and industrial fibers as an alternative tunnel support system in section 4 of the third phase of Tabriz metro line 2. The evaluation of the load-carrying capacity of shotcrete-lattice and fiber-reinforced shotcrete support systems showed that the maximum tensile stress for the preferred support systems is 165.1 MPa and 1.284 MPa, respectively. The results of finite element analysis revealed that shotcrete with 40 of industrial steel fibers and 30 of recycled materials can be a viable alternative to the traditional shotcrete-lattice tunnel support system in Tabriz metro line 2 in terms of resistance and surface settlement properties. The use of recycled fibers is cost-effective, and a smaller quantity of recycled fibers can provide similar mechanical properties compared to a larger quantity of industrial fibers.

Keywords

Main Subjects


[1] Ağbay, E., & Topal, T. (2020). Evaluation of twin tunnel-induced surface ground deformation by empirical and numerical analyses (NATM part of Eurasia tunnel, Turkey). Computers and Geotechnics, 119, 103367.‏ doi:https://doi.org/10.1016/
j.compgeo.2019.103367
[2] Khan, M. U., Tahir, M. U., Emad, M. Z., Raza, M. A., & Saki, S. A. (2023). Investigating strength anisotropy of plain and steel fiber reinforced shotcrete. Mining, Metallurgy & Exploration, 40(1), 291-303.doi: https://doi.org/10.1007/s42461-022-00715-9
[3] De la Fuente, A., Pujadas, P., Blanco, A., & Aguado, A. (2012). Experiences in Barcelona with the use of fibres in segmental linings. Tunnelling and Underground Space Technology, 27(1), 60-71.doi: https://doi.org/10.1016/j.tust.2011.07.001
[4] Balagopal, V., Panicker, A. S., Arathy, M. S., Sandeep, S., & Pillai, S. K. (2022). Influence of fibers on the mechanical properties of cementitious composites-a review. Materials Today: Proceedings, 65, 1846-1850.  doi: https://doi.org/10.1016/
j.matpr.2022.05.023
[5] Choumanidis, D., Badogiannis, E., Nomikos, P., & Sofianos, A. (2016). The effect of different fibres on the flexural behaviour of concrete exposed to normal and elevated temperatures. Construction and Building Materials, 129, 266-277. doi: https://doi.org/10.1016/j.conbuildmat.2016.10.089
[6] Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and building materials, 103, 8-14. doi: https://doi.org/10.1016/j.conbuildmat.2015.11.028
[7] Congro, M., de Alencar Monteiro, V. M., de Andrade Silva, F., Roehl, D., & Brandão, A. L. (2023). A novel hybrid model to design fiber-reinforced shotcrete for tunnel linings. Tunnelling and Underground Space Technology, 132, 104881. doi:
[8] Naseri, S., & Bahrani, N. (2021). Design of initial shotcrete lining for a mine shaft using two-dimensional finite element models considering excavation advance rate. Geotechnical and Geological Engineering, 39, 4709-4732.doi: https://doi.org/10.1007/s10706-021-01773-4
[9] Neuner, M., Schreter, M., Gamnitzer, P., & Hofstetter, G. (2020). On discrepancies between time-dependent nonlinear 3D and 2D finite element simulations of deep tunnel advance: A numerical study on the Brenner Base Tunnel. Computers and Geotechnics, 119, 103355. doi: https://doi.org/10.1016/
j.compgeo.2019.103355
[10] Alejano, L. R., Rodriguez-Dono, A., Alonso, E., & Manín, G. F. (2009). Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. Tunnelling and Underground Space Technology, 24(6), 689-705. doi:
[11] Alonso, E., Alejano, L. R., Varas, F., Fdez‐Manin, G., & Carranza‐Torres, C. (2003). Ground response curves for rock masses exhibiting strain‐softening behaviour. International journal for numerical and analytical methods in geomechanics, 27(13), 1153-1185. doi:
[12] Neuner, M., Schreter, M., Gamnitzer, P., & Hofstetter, G. (2020). On discrepancies between time-dependent nonlinear 3D and 2D finite element simulations of deep tunnel advance: A numerical study on the Brenner Base Tunnel. Computers and Geotechnics, 119, 103355. doi: https://doi.org/10.1016/
j.compgeo.2019.103355
[13] Chortis, F., & Kavvadas, M. (2021). Three-dimensional numerical investigation of the interaction between twin tunnels. Geotechnical and Geological Engineering, 39(8), 5559-5585.doi: https://doi.org/10.1007/s10706-021-01845-5
[14] Weifner, T., & Bergmeister, K. (2020). 3D simulations for the Brenner Base Tunnel considering interaction effects. In Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art (pp. 3355–3364). CRC Press.
[15] Vitali, O. P., Celestino, T. B., & Bobet, A. (2022). Construction strategies for a NATM tunnel in Sa˜o Paulo, Brazil, in residual soil. Underground Space, 7, 1–18. doi:https://doi.org/10.1016/
j.undsp.2021.04.002
[16] Gamnitzer, P., Neuner, M., Schreter-Fleischhacker, M., Dummer, A., Mader, T., Smaniotto, S., & Hofstetter, G. (2024). Key features of numerical models for the FE-simulation of deep tunnel advance by the NATM. Underground Space, 14, 357-376. doi: https://doi.org/10.1016/j.undsp.2023.06.007
[17] Sjölander, A., & Ansell, A. (2017). Numerical simulations of restrained shrinkage cracking in glass fibre reinforced shotcrete slabs. Advances in Civil Engineering, 2017(1), 8987626. doi: https://doi.org/10.1155/2017/8987626
[18] Massone, L. M., & Nazar, F. (2018). Analytical and experimental evaluation of the use of fibers as partial reinforcement in shotcrete for tunnels in Chile. Tunnelling and Underground Space Technology, 77, 13-25. doi: https://doi.org/10.1016/
j.tust.2018.03.027
[19] Larive, C., Bouteille, S., Berthoz, N., & Zappelli, S. (2020). Fiber-reinforced sprayed concrete as a permanent tunnel lining. Structural Engineering International, 30(4), 498-505. doi: ‏ https://doi.org/10.1080/10168664.2020.1735981
[20] Sheikh, K. A., & Saif, A. (2020). Steel Fibre-Reinforced Shotcrete as an alternative to conventional concrete tunnel lining: A case study of Gulpur Hydropower Project. Geomechanics and Geoengineering, 15(4), 252-262. doi:  https://doi.org/
10.1080/17486025.2019.1639831
[21] de Alencar Monteiro, V. M., & de Andrade Silva, F. (2021). On the design of the fiber reinforced shotcrete applied as primary rock support in the Cuiabá underground mining excavations: A case study. Case Studies in Construction Materials, 15, e00784. doi: https://doi.org/10.1016/j.cscm.2021.e00784
[22] Chiaia, B., Fantilli, A. P., & Vallini, P. (2009). Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings. Engineering Structures, 31(7), 1600-1606. doi: https://doi.org/10.1016/j.engstruct.2009.02.037
[23] Sharghi, M., Chakeri, H., Afshin, H., Török, Á., & Dias, D. (2021). Investigation of the feasibility of using recycled steel fibers in tunnel lining segments. Tunnelling and Underground Space Technology, 110, 103826. doi: ‏https://doi.org/10.1016/
j.tust.2021.103826
[24] Majumder, D., Viladkar, M. N., & Singh, M. (2023). Numerical modelling of tunnels excavated in squeezing ground condition: A case study. Arabian Journal for Science and Engineering, 48(4), 4657-4673. doi: https://doi.org/10.1007/s13369-022-07098-5
[25] Sharghi, M., Afshin, H., Chakeri, H., Dias, D., & Török, Á. (2023). Structural and environmental performance of recycled steel fiber reinforced concrete segment under the thrust force of the tunnel boring machine jacks. Structural Concrete, 24(2), 2638-2661. doi:https://doi.org/10.1002/suco.202200538
[26] Chakeri, H., Darbor, M., Maleki, F., & Minaee, T. (2023). Experimental investigation of steel fibers’ effect on the improvement of mechanical properties of concrete segmental lining in mechanized tunneling. Rudarsko-geološko-naftni zbornik, 38(3), 55-63. doi:https://doi.org/10.17794/rgn.2023.3.5
[27] Zhang, Z. X., Liu, C., Huang, X., Kwok, C. Y., & Teng, L. (2016). Three-dimensional finite-element analysis on ground responses during twin-tunnel construction using the URUP method. Tunnelling and Underground Space Technology, 58, 133-146. doi: https://doi.org/10.1016/j.tust.2016.05.001
[28] Tabriz Urban Railway Organization, http://tabrizmetro.ir
/?PageID=69
[29] Chapra, S. C., & Canale, R. P. (1988). Numerical Methods for EngineersMcGraw-Hill. Inc., New York.
[1] Backus, G. E., Gilbert, F., (1967). Numerical Applications of a Formalism for Geophysical Inverse Problems. Geophysical Journal of the Royal Astronomical Society, 13, 1-3, 247–276.
[2] Backus, G.E., Gilbert, F., (1968). The Resolving power of Gross Earth Data, Geophysical Journal of the Royal Astronomical Society, 16, 169–205.
[3] Backus, G.E., Gilbert, F., (1970). Uniqueness in the Inversion of inaccurate Gross Earth Data, Philosophical Transactions of the Royal Society of London A, 266, 123-192.
[4] Mosegaard, K., Tarantola, A., (1995). Monte Carlo sampling of solutions to inverse problems. J Geophys Res Solid Earth 100(B7),12431–12447
[5] Gouveia, W. P., Scales, J. A., (1997). Resolution of seismic waveform inversion: Bayes versus Occam, Inverse Problems 13, 323–349.
[6] Moorkamp M, Jones AG, Eaton DW (2007) Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: are seismic velocities and electrical conductivities compatible? Geophysical Research Letters, 34(16):L16, 311
[7] Akca I, Basokur AT (2010) Extraction of structure-based geoelectric models by hybrid genetic algorithms. Geophysics 75(1):F15–F22
[8] Roy L, Sen MK, Blankenship DD, Stoffa PL, Richter TG (2005) Inversion and uncertainty estimation of gravity data using simulated annealing: an application over Lake Vostok, East Antarctica. Geophysics 70(1):J1–J12
[9] Wang R, Yin C, Wang M, Wang G (2012) Simulated annealing for controlled-source audio-frequency magnetotelluric data inversion. Geophysics 77(2):E127–E133.
[10] Reading, A. M., Cracknell, M. J., and Sambridge, M., (2011). Turning geophysical data into geological information or why a broader range of mathematical strategies is needed to better enable discovery. Preview, 151,24–29. https://doi.org/10.1071/PVv2011n151p24.
[11] Fernández-Muñiz , Z., Khaniani, H., and , J. L. (2019). Data kit inversion and uncertainty analysis. Journal of Applied Geophysics, 161, 228–238.
[12] Efron, B., (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.
[13] McLaughlin, K.L., (1988). Maximum-likelihood event magnitude estima- tion with bootstrapping for uncertainty estimation, Bull. seism. Soc. Am., 78(2), 855–862.
[14] Tichelaar, B.W. and Ruff, L.J., (1989). How good are our best models? Jack- knifing, bootstrapping, and earthquake depth, EOS, Trans. Am. geophys. Un., 55(12), 1613–1624.
[15] Shearer, P.M., (1997). Improving local earthquake locations using the l1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence, Journal of Geophysical Research, 102(B4), 8269–8283.
[16] Parsekian, A. D., and Grombacher, D. (2015). Uncertainty estimates for surface nuclear magnetic resonance water content and relaxation time profiles from bootstrap statistics. Journal of Applied Geophysics, 119, 61–70. https://doi.org/10.1016/
j.jappgeo.2015.05.005.
[17] Hertrich, M., (2008). Imaging of groundwater with nuclear magnetic resonance: Progress in Nuclear Magnetic Resonance Spectroscopy, 53, 227–248.
[18] Schnaidt, S., and Heinson, G. (2015). Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling. Geophysical Journal International, 203(1), 92–106. https://doi.org/10.1093/gji/ggv264.
[19] Campanya, J., Ledo, J., Queralt, P., Marcuello, A. and Jones, A.G., (2014). A new methodology to estimate magnetotelluric (MT) tensor relationships: estimation of local transfer-functions by combining interstation transfer- functions (ELICIT), Geophysical Journal International, 198(1), 484–494.
[20] Neukirch, M. and Garcia, X., 2014. Nonstationary magneto-telluric data processing with instantaneous parameter, Journal of Geophysical Research, 119, 1634–1654.
[21] Ebtehaj, M., Moradkhani, H., and Gupta, H. V. (2010). Improving robust-ness of hydrologic parameter estimation by the use of moving block bootstrap resampling, Water Resources Res., 46, W07515,
[22] Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann.Statist. 17 1217–1261.
[23] Liu, R. Y. and Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. In Exploring the Limits of Bootstrap (R. Lepage and L. Billard, eds.) 225–248. Wiley, New York.
[24] Fernández Martínez, J. L., Zulima Fernández Muñiz, M and Tompkins, M. J., (2012). On the topography of the cost functional in linear and nonlinear inverse problems, Geophysics 77: W1-W15.
[25] Constable, S. C., R. L. Parker, and C. G. Constable, (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52,289–300, doi: 10.1190/1.1442303.
[26] Aster, R., Borchers, B., and Thurber, C. (2005). Parameter estimation and inverse problems. Elsevier.
[27] Ghosh, D.P., (1971). The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements Geophysical Prospecting, 19, 192-217.
[28] McNeill, J.D., (1980). Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Tech note TN-6. Geonics Ltd, Mississauga, ON, Canada.