[1] Ağbay, E., & Topal, T. (2020). Evaluation of twin tunnel-induced surface ground deformation by empirical and numerical analyses (NATM part of Eurasia tunnel, Turkey). Computers and Geotechnics, 119, 103367. doi:
https://doi.org/10.1016/j.compgeo.2019.103367
[2] Khan, M. U., Tahir, M. U., Emad, M. Z., Raza, M. A., & Saki, S. A. (2023). Investigating strength anisotropy of plain and steel fiber reinforced shotcrete. Mining, Metallurgy & Exploration, 40(1), 291-303.doi:
https://doi.org/10.1007/s42461-022-00715-9
[3] De la Fuente, A., Pujadas, P., Blanco, A., & Aguado, A. (2012). Experiences in Barcelona with the use of fibres in segmental linings. Tunnelling and Underground Space Technology, 27(1), 60-71.doi:
https://doi.org/10.1016/j.tust.2011.07.001
[4] Balagopal, V., Panicker, A. S., Arathy, M. S., Sandeep, S., & Pillai, S. K. (2022). Influence of fibers on the mechanical properties of cementitious composites-a review. Materials Today: Proceedings, 65, 1846-1850. doi:
https://doi.org/10.1016/j.matpr.2022.05.023
[5] Choumanidis, D., Badogiannis, E., Nomikos, P., & Sofianos, A. (2016). The effect of different fibres on the flexural behaviour of concrete exposed to normal and elevated temperatures. Construction and Building Materials, 129, 266-277. doi:
https://doi.org/10.1016/j.conbuildmat.2016.10.089
[6] Wu, Z., Shi, C., He, W., & Wu, L. (2016). Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Construction and building materials, 103, 8-14. doi:
https://doi.org/10.1016/j.conbuildmat.2015.11.028
[7] Congro, M., de Alencar Monteiro, V. M., de Andrade Silva, F., Roehl, D., & Brandão, A. L. (2023). A novel hybrid model to design fiber-reinforced shotcrete for tunnel linings. Tunnelling and Underground Space Technology, 132, 104881. doi:
[8] Naseri, S., & Bahrani, N. (2021). Design of initial shotcrete lining for a mine shaft using two-dimensional finite element models considering excavation advance rate. Geotechnical and Geological Engineering, 39, 4709-4732.doi:
https://doi.org/10.1007/s10706-021-01773-4
[9] Neuner, M., Schreter, M., Gamnitzer, P., & Hofstetter, G. (2020). On discrepancies between time-dependent nonlinear 3D and 2D finite element simulations of deep tunnel advance: A numerical study on the Brenner Base Tunnel. Computers and Geotechnics, 119, 103355. doi:
https://doi.org/10.1016/j.compgeo.2019.103355
[10] Alejano, L. R., Rodriguez-Dono, A., Alonso, E., & Manín, G. F. (2009). Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. Tunnelling and Underground Space Technology, 24(6), 689-705. doi:
[11] Alonso, E., Alejano, L. R., Varas, F., Fdez‐Manin, G., & Carranza‐Torres, C. (2003). Ground response curves for rock masses exhibiting strain‐softening behaviour. International journal for numerical and analytical methods in geomechanics, 27(13), 1153-1185. doi:
[12] Neuner, M., Schreter, M., Gamnitzer, P., & Hofstetter, G. (2020). On discrepancies between time-dependent nonlinear 3D and 2D finite element simulations of deep tunnel advance: A numerical study on the Brenner Base Tunnel. Computers and Geotechnics, 119, 103355. doi:
https://doi.org/10.1016/j.compgeo.2019.103355
[13] Chortis, F., & Kavvadas, M. (2021). Three-dimensional numerical investigation of the interaction between twin tunnels. Geotechnical and Geological Engineering, 39(8), 5559-5585.doi:
https://doi.org/10.1007/s10706-021-01845-5
[14] Weifner, T., & Bergmeister, K. (2020). 3D simulations for the Brenner Base Tunnel considering interaction effects. In Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art (pp. 3355–3364). CRC Press.
[15] Vitali, O. P., Celestino, T. B., & Bobet, A. (2022). Construction strategies for a NATM tunnel in Sa˜o Paulo, Brazil, in residual soil. Underground Space, 7, 1–18. doi:
[16] Gamnitzer, P., Neuner, M., Schreter-Fleischhacker, M., Dummer, A., Mader, T., Smaniotto, S., & Hofstetter, G. (2024). Key features of numerical models for the FE-simulation of deep tunnel advance by the NATM. Underground Space, 14, 357-376. doi:
[17] Sjölander, A., & Ansell, A. (2017). Numerical simulations of restrained shrinkage cracking in glass fibre reinforced shotcrete slabs. Advances in Civil Engineering, 2017(1), 8987626. doi:
[18] Massone, L. M., & Nazar, F. (2018). Analytical and experimental evaluation of the use of fibers as partial reinforcement in shotcrete for tunnels in Chile. Tunnelling and Underground Space Technology, 77, 13-25. doi:
https://doi.org/10.1016/j.tust.2018.03.027
[19] Larive, C., Bouteille, S., Berthoz, N., & Zappelli, S. (2020). Fiber-reinforced sprayed concrete as a permanent tunnel lining. Structural Engineering International, 30(4), 498-505. doi:
https://doi.org/10.1080/10168664.2020.1735981
[20] Sheikh, K. A., & Saif, A. (2020). Steel Fibre-Reinforced Shotcrete as an alternative to conventional concrete tunnel lining: A case study of Gulpur Hydropower Project. Geomechanics and Geoengineering, 15(4), 252-262. doi:
https://doi.org/10.1080/17486025.2019.1639831
[21] de Alencar Monteiro, V. M., & de Andrade Silva, F. (2021). On the design of the fiber reinforced shotcrete applied as primary rock support in the Cuiabá underground mining excavations: A case study. Case Studies in Construction Materials, 15, e00784. doi:
[22] Chiaia, B., Fantilli, A. P., & Vallini, P. (2009). Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings. Engineering Structures, 31(7), 1600-1606. doi:
[23] Sharghi, M., Chakeri, H., Afshin, H., Török, Á., & Dias, D. (2021). Investigation of the feasibility of using recycled steel fibers in tunnel lining segments. Tunnelling and Underground Space Technology, 110, 103826. doi:
https://doi.org/10.1016/j.tust.2021.103826
[24] Majumder, D., Viladkar, M. N., & Singh, M. (2023). Numerical modelling of tunnels excavated in squeezing ground condition: A case study. Arabian Journal for Science and Engineering, 48(4), 4657-4673. doi:
[25] Sharghi, M., Afshin, H., Chakeri, H., Dias, D., & Török, Á. (2023). Structural and environmental performance of recycled steel fiber reinforced concrete segment under the thrust force of the tunnel boring machine jacks. Structural Concrete, 24(2), 2638-2661. doi:
[26] Chakeri, H., Darbor, M., Maleki, F., & Minaee, T. (2023). Experimental investigation of steel fibers’ effect on the improvement of mechanical properties of concrete segmental lining in mechanized tunneling. Rudarsko-geološko-naftni zbornik, 38(3), 55-63. doi:
[27] Zhang, Z. X., Liu, C., Huang, X., Kwok, C. Y., & Teng, L. (2016). Three-dimensional finite-element analysis on ground responses during twin-tunnel construction using the URUP method. Tunnelling and Underground Space Technology, 58, 133-146. doi:
https://doi.org/10.1016/j.tust.2016.05.001
[29] Chapra, S. C., & Canale, R. P. (1988). Numerical Methods for EngineersMcGraw-Hill. Inc., New York.